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ABSTRACT 

A theoretical study of the gas dynamic interaction between a 

hypersonic plume and the opposed hypersonic external stream is 

presented.  Steady, axisymmetric, inviscid, perfect gas flow is 

postulated for both the bow and far field regions.  Limiting 

forms of solutions are obtained for the bow region by application 

of the Newton-Busemann approximation (i.e., e ,G. -0 M   M   -oo 
2     2 e  io    cog' oo i0 

such that M  ee.M   e. -0(1)) to both the exhaust plume and 
e      "D IO 

ambient air flow.  Through asymptotic expansions and their matching, 

it is found that six regions are required to adequately describe 

the bow region.  For the far field region, the hypersonic small- 

disturbance form of the Newton-Busemann approximation (i.e., e -0, 

■•oo,-0'*«"0 such that MLe6eee~0(1)) is aPPlied.  From asymptotic 
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expansions and their matching,   it  is   found  that   "entropy wake" 

solutions  are required  to adequately describe  the  exhaust  flow and 

the  air   flow near  the  contact  surface.    Analytical   solutions  are 

obtained which   (i)   define  scaling parameters  for  the bow and   far 

fie^d   flow;    (ii)   estimate  the  accuracy  of  the Newtonian  impact 

theory  in predicting bow region  geometry and properties;   (iii)   estab- 
i 

lish the variation of bow and far field uroperties with variation 

in the primary system design parameters. 
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INTRODUCTION 

A theoretical study of the interaction of a highly underex- 

panded jet issuing into a high Mach number free stream that 

is opposed to the jet's expansion along its axis is present- 

ed.  At some distance, characterized by the lengtn  H-aio 

the jet and free stream gases interact. The jet flow is there- 

by deflected downstream by the external flow. 7he particular 

case of interest to be examined in this study concerns flows 

where the typical dimension of the body D  is much less 

than  R»io (see schematic (1)). 

Schematic (1) 
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For this case,  analytical models of the upstream and downstream 

gas dynamic interaction processes are formulated herein.    The 

following approximations are postulated:' 

1. Steady Flow 
2. Axisymrattric Flow 

3. Continuum 
4. Inviscid 

5. Thermally and Calorically Perfect Gas 

In further studies, assumption 4 can be partially relaxed by 

applying boundary layer concepts along the shear surfaces for 

high Reynolds' number flows.  Also, assumption 5 can be re- 

laxed quite easily by applying Mollier charts or similar models 

for equilibrium gas dynamic properties. 

A general schematic of the flow structure under these assump- 

tions is given in figure 1, where three distinct flow regions 

are discerned. The major characteristics of these regions 

are as follows: 

Bow Region \ 

This region is characterized by nearly normal interior and 

exterior shocks and relatively thin layers. The flow within 

the layers is then necessarily subsonic and of high density. 

Corner Region 

The layers thicken markedly and turn in a dovmstream direc- 

tion.  Both interior and exterior layers undergo transonic 

expansions about the relatively motionless core region sur- 

rounding the plume. The development of the plume ahead of 

IM IWI I  -'— 



the internal shock resembles very closely that of a plume ex- 

panding into a quiescent ambient. 

Far Field Region 

The exterior shock and interface are at relatively small angles 

with the freestream.  The flow in all layers is supersonic and 

naarly parallel to the axis. 

- 

Flow systems of these types are of considerable interest for the 

practical applications of force vector control and attendant 

surface thermal protection of re-entry vehicles. For force vec- 

tor control, the altered pressure distribution on the body, as 

well as the jet thrust, has to be considered in calculating the 

total force on the body. For thermal protection, although the 

hot external gases are blowi *>ee from the nose by the jet, it 

is still necessary to consider the heat flux due to the poss- 

ll»ll reattachment of this separated gas flow on the body. 

In addition to the effects already mentioned, which are mani- 

fested near the body, we must also be concerned with the flow 

field far downstream of the body. In this wake-like region, 

the mixing of the jet gases may affect the chemical processes 

occurring in the wake to such an extent that observable prop- 

erties and hence detection or communication may be greatly fa- 

cilitated or decreased.  It is apparent that if such a sys- 

tem were to be properly utilized, a detailed understanding of 

the physical and chemical processes occurring within the dis- 

turbed flow field must be obtained. 

3 
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Previous theoretical and experimental studies have added con- 

siderably to our basic knowledge in this area. The first stud- 

12 3 
ies * * were essentially experimental in nature, applying only 

cimplified modeling to correlate the data. A significant result 

2 3 of these early investigations '^ was that two modes of inter- 

action were observed to exist. The modes were dependent upon 

the jet exit Mach number Mj , free stream Mach number Mcoe , 

ratio of jet stagnation pressure to free stream dynamic pres- 

sure TT , body size D , and shape. One mode is characterized 

by large interaction distances with unsteady shocks and bound- 

ing surfaces. This flow regime is designated as the unstable 

case. 

The second mode of interaction is characterized by a relatively 

short interaction length and steady strong shocks. This flow 

regime is the case investigated herein. The mechanism for 

transition from the steady to unsteady flow was postulated by 

Finley ^ to be a result of the development, for low Tj and 

^»Ä« or high Mj , of a multiple cell structure for the un- 

disturbed plume before the- interaction region is reached. In 

view of the subsonic flow existing behind the Mach disc sepa- 

rating the cells, we have the possibility of upstream influ- 

ence from the surrounding gases affecting the interaction re- 

gion in a possibly unsteady manner. 
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Mooe Mj 
7.1 1.0 
7.1 4.0 
7.1 4.Ö5 
7.1 5.30 
2.71 3.10 
2.71 3.90 

The boundary between stable and unstable flow,1»2»^for experi- 

ments where the effect of body si  on the flow is negligible 

is given by: 

Tf 
2 

8 

15 
20 
4 
3 

Thus, to achieve stable flow, the jet stagnation pressure must 

be much larger than the free stream dynamic pressure (i.e.,7T 

>^ 1 ) for moderate values of Mj . These are the same con- 

ditions under which R^io becomes much larger than D (for D 

approximately equal to jet exit diameter); therefore, the case 

studied herein will always: be of the stable type. 

It should be noted that one investigator  observed a region 

for large values of TT where the flow became unstable and 

continued to be so for all higher values of TT , This result 

has not been duplicated by other investigators, and indica- 

tions of stable interactions ^»5»' have been obtained from other 

experiments at conditions that fall within the region of un- 

stable flow found in Reference 2. 

In addition, it has been observed 1»■'»'*■ that the interaction 

length r\9;6 for the stable condition is a function of TT, Vj 

^•^rionjMjipaeand that the contact surface separating the 
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external stre?-1 from the jet gases is almost spherical in nat- 

ure. These observations have been utilized in constructing 

simplified models to describe the flow field associated with 

stable interactions. 

Theoretical analyses of this jet interaction problem have ap- 

peared only recently.  In 1969i Laurmann »utilizing the 

Newtonian impact theory, calculated quantitative results for 

the upstream region. This paper presented general features of 

the upstream bow interaction, but did not correctly treat such 

areas as the corner region and the far field development of 

the flow.  In 1971, a time-dependent numerical technique  was 

employed by Rudman and Vaglio-Laurin to calculate detailed 

quantitative dynamic properties of the upstream flow interac- 

tion. In the calculations, the jet plume boundary layer in- 

tersection with the shock layers was assumed to be a point in- 

teraction and the core pressure was assumed to be that of the 

freestream. The downstream flow was not considered in the 

above report and only the bow region was evaluated. 

The present study was vndertaken for the primary task of cor- 

recting the errors inherent in a Newtonian impact analysis, to 

estimate the effect of the corner region on the total flow 

field, and to calculate the far field interaction. 

An analytic approach was considered since such a method pro- 

vides for the greatest insight into the physical processes and 

6 
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also defines the accuracy associated with  -rious approxima- 

tions.  Finally, this study also acts as a model for extend- 

ing calculations to more complicated configurations; e.g., 

where the body influences the flow or where the jet is at an 

angle of incidence to the free stream. 

We must now determine the operating conditions under which our 

simplifying assumptions are satisfied. For a missile or ve- 

hicle re-entering the earth's atmosphere, we have the follow- 

ing range of conditions from approximately 400,000 ft. alti- 

tude down to approximately 50,000 ft. altitude. 

Ranpie of Typical Operating Conditions for a Re-Entry Vehicle 

Uoo« (ft/sec)      15,000 23,000 

Mco, 10 25 

poo» (lbf/ft2) 6.92x10~5       23.27 

Over this range of operating conditions, we generally find 

that rarefaction, viscous, chemical or physical effects may be 

significant. This would violate our assumptions and therefore 

we must examine the relevant parameters and their numerical 

values in order to ascertain when our assumptions are fully 

satisfied. 

The first limitation on the parameters involves the assump- 

tion of steady flow and requires that Tf^ llM«8e^> 1., Mj r 0(0 

The reasons for this have been discussed previously. A second 

limitation relates to rarefaction effects occurring within the 

■aaMa-Mn—M 



flowfield. For the  upstream region, we have three areas where 

rarefaction effects may invalidate the application of the ana- 

lysis. The first area is the plume core itself where the large 

degree of expansion may take the free plume flow into the tran- 

sitional regime. From an analysis of a steady spherical source 

flew expanding into a vacuum Kamel and V/illis  derived an ex- 

pression for the distance beyond which the source gas becomes 

collisionless. This is given by 

where r^ is the jet nozzle throat radius and Re* is the Rey- 

nolds* number evaluated at the nozzle throat. This value is 

only a function of the nozzle throat conditions and hence is 

a constant for a particular set of chamber conditions. This 

can also be simply related to the thrust of our jet 

where I»,» is the specific impulse, T is the thrust and Rj is 

the jet chamber pressure.  In order that the plume flow for 

our problem bt a continuum, the interaction distance, Kst« t 

for the interior shock must be much less than the distance R-b- 

The interaction distance Rs;,» is determined by the condi- 

tion of equal stagnation pressures along the axis. Therefore, 

8 
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This expression is a result of assuming a source like behavior 

for the undisturbed plume properties. The occurence of the 

various quantities in the above expression will be detailed 

in a later section relating to undisturbed plume properties. 

The condition for continuum flow for the plume expansion is 

then 

In terms of the thrust of the jet, the above becomes 

= L 

Following Reference (9) we take the numerical value of 5^- ^ lO 

to be safely within the continuum region. This bound is in- 

dicated in Figure 2 for the representative conditions of 

M«»« = lO, P.j =50 dim. V,U* = SJCI0"
6 Ibf s«c/ft*J U^-SOOO^ps 

^l Ki»25 >  X*p « 3oo ««c. 

We now direct our attention to the internal and external shock 

layers where rarefaction effects can result in the thickening 

of the shocks and shear layers to such an extent that they 

strongly influence the development of the layers. In a paper 

by Bush  it was illustrated that the thickening of the shocks 

and growth of the viscous shear layers are related for the 

shock layers; and, therefore, we need only determine the thick- 

ness of the shock with respect to the layer thickness to de- 

- 
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termine where  inviscid continuum theory is valid.    It has been 

shown        that a continuum inviscid description of the flow is 

appropriate when- 

S**A,. » tu/u,.  - 15 

where in the above £ denotes thickness, and Ji  denotes layer, 

5 shock and « , t , external and internal layers respect- 
12 

ively. From Adams and Probstein   we have for the thickness 

of the shock for either external or internal flow 

Ss     ^ v>*/c» 

Where C» and V^ respectively are the speed of sound and vis- 

cosity evaluated at M = 1 . 

After introaucing the interaction length Rs^ as a signifi- 

cant length, this then reduces to "^ 

Rsio 

Vrtiere u) is  the exponent for temperature in the power law 

viscosity model, R« is the Reynolds» number arid M« is the 

Mach number, based on free stream properties. V,Te now intro- 

duce the first order thicknesses of the shock layers, which 

will be derived in detail in a later section. 

10 
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V/here €*,€(,.  arc tha density ratios across the normal part of 

the shocks along the axis of symmetry. 

Therefore, 

001. 

where Ra> is based on the interaction distance Rsi0 .  JsinG 

the source model for the plume properties and the equality of 

stagnation pressures to determine Rs^ , we can reduce the 

above ratios to functions of jet thrust,T , jet throat prop- 

erties and external flow gas properties. The results of this 

are: 

ki = igJiL^ CiWV^Wmg^ ^  , 
5S  ^    "L* 

Using values stated previously which are representative of 

typical flight conditions, the above can be plotted as a func- 

tion of altitude for a given thrust, above which rarefaction- 

effects have to be accounted for. This has been carried out 

in Figure 2 and it can be seen that for jets of 10 to 105 

pound force thrust, there is a large region of flow where tl e 

continuum inviscid analysis will apply. 

V/e must now examine the region where perfect gas behavior or 

equixibrium gas behavior will apply. For the external shock 

layer, there are many analyses and data available which indi- 

cate when nonequilibrium effects in such general flow fields 

11 
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become important. For the plume and internal flow, this is not 

the case. The reason for this is that rocket exhaust chemi- 

cal composition, especially those of the solid propellant va- 

riety, varies greatly from application to application and in 

each case the bounds of equilibrium are different. Therefore, 

v/e cannot define a single general condition when nonequili- 

brium flow occurs. Therefore, we will set down ehe bound for 

the external flow as the limit for the combined layers above 

which the flow cannot be considered to be in equilibrium. 

The external layer nonequilibrium bound is adapted from a 

paper by Cheng  and is based on the relaxation processes be- 

hind a normal shock. V/hen the distance for relaxation to equi- 

librium conditions behind the shock becomes of the same order 

of magnitude as the layer thickness, then nonequilibrium ef- 

fects must be taken into account. Cheng^ results gave a sin- 

gle point at high altitude, which when combined with binary 

scaling led to the result in Figure 2, above which nonequili- • 

brium effects must be considered. Binary scaling derives from 

the fact that at high altitude the probability for chemical 

reactions to occur by three-body collisions is much less than 

that for two-body reactions. Under these conditions, it can 

be shown that if density and field dimension are held constant, 

then the degree of nonequilibrium will be the same in each 

case. 

12 
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Since the body dinensicn Rj^is related to jet thrust and den- 

sity pae is related to altitude, we can then establish a 

relationship between thrust and altitude, which will maintain 

the product of density and dimension constant, giving the 

same degree of nonequilibrium, Tho binary scaling principle 

only applies to high altitude, for moderate to low altitude 

collisions should be prevalent enough that equilibrium flow 

is naintained. 

Referring tc Figure 2, it is shown that for typical re-entry 

conditions the extent of the equilibrium, inviscid, continuum 

flow is about one half of the complete continuum, inviscid 

region; however, there is still a considerable region where 

all the assumptions stated previously are fully satisfied. 

Now that we have determined ou? bounds of validity for an ana- 

lysis based on several assumptions, we can proceed to outline 

the analysis in detail. 

13 
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JET EXHAUST MODEL 

The undisturbed plume which interacts with the external flow 

to form the bow layer develops in an environment (the core 

region) where there is little fluid motion and hence nearly 

constant pressure. Under these circumstances, the undisturbed 

plume is analogous to the case of a jet exhausting into a 

quiescent ambient which is at the core pressure. V/e can then 

employ analyses developed for plumes exhausting into quies- 

cent ambients to our retro plume case. To be consistent with 

the analyses for the downstream and bow region, v/e will uti- 

lize an analytical approach for the undisturbed plume. There 

are raary models available for describing the isentropic ex- 

par, ^loa of a jet far away from the nozzle exit. Many of them 

have the form 15» l6» 171* 

/ oc <k*zlC£. (1) 

Other properties can be determined from this expression by use 

of the isentropic flow relations (No's. 30.2-30.3 from the Bow 

Analysis). 

J? J ^ reference, an expression for Mach number is given 
which when substituted into the isentropic relationships for 
high Mach number gives a result identical to (1). 

14 
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In (1) (p  is the anple measured =way from the axis of sym- 

metry, R is radius measured from the nozzle exit and n 

and C are constants for a given nozzle and jet gas compo- 

sition. Various forms have been proposed for H and C as 

functions of plume s--cific heat ratio ^J , exit Mach num- 

ber nj , and nozzle exit angle 0n . Using the form C = 

TT/ae«^where 8« is the sum of the Prandtl-Meyer limiting 

turning angle into a vacuum and Gn.gives the correct theo- 

retical result of zero density or infinite Mach number when 

9* 0«  • For this value of Z   , we can extract from a 

Prandtl-Meyer analysis 15 near the nozzle lip the value forn. 

(2) 

This result can also be obtained from application of the small 

disturbance theory to hypersonic jets expanding into a vacuum0. 

As will be shown in the bow layer analysis section, these va- 

lues for H and C give the physically realistic result in the 

limit as  £ io -*. o    that the density and other flow vari- 

ables remain of tne same order as we go away from the axis. 

For any other choice of C and n as a function of IJ the 

density would be finite on the axis and either zero or infi- 

nite away from the axis. Even though the form o':' n as a 

function of *j is correct, its numerical value for a given tfj 

is still not clear. This is because comparisons with numerical 

results give different values for H , varying between the value 

15 
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given in (2) and one half that value  . The difficulty is 

that the form of equation (1) is not general enough to be 

valid over a full range of R and <p , This point is illus- 

trated in an article by Boynton ^ where he shows for O < »*i 

the proportionality constant is approximately one and for 

Cl> •'  the numerical results lie closer to the curve for a 

proportionality factor of two. Since the bow shock layer and 

downstream layer depend critically on the undisturbed plume 

flow, (as will be shown in the bow and downstream analyses 

sections) then it was felt that a review of numerically cal- 

culated undisturbed plumes to givt "best" values for H was 

justified. The expected value would probably lie somewhere 

between the theoretical value —-*—r  and  -rrr—T 

Three sources of numerical plume calculation data were chosen 

for examination to determine "best" values for H . In re- 

ference (20) numerical calculation of three plumes from super- 

sonic nozzles expanding into a quiescent ambient were presented. 

Two of the nozzles ( Jfj = 1.15,1.18)  are representative of 

thopi used for launch vehicles, and the third ( ifj *h2M)   is 

representative of spacecraft nozzles. The method of charac- 

teristics was used in this study to determine, for constant 

0J , Mach number contours, and density and temperature dis- 

tributions along and perpendicular to the axis of symmetry. 

The second reference   contained the calculation of the plume 

resulting from the expansion of air through a sonic orifice. 

Mach number distributions perpendicular to the axis of sym- 

16 
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metry were given. The third source used 15 contains results 

of a numerical calculation, using a finite difference tech- 

nique, of the flow from a nozzle representative of a launch 

vehicle.  Density is given as a function of angle from the 

, axis in this work. To determine nfrom the above sources for 

points away from the axis, we simply use the isentropic re- 

lationships and the assumed distribution (1) to determine 

for a known value of the constant 8« and p at a given tf> 

and R  . However, near the axis this procedure does not 

yield good results since large changes in n produce little 

measured change In ß  or M in this region. In this case, 

we then apply a derivative of the density distribution to ob- 

tain a better relationship for determining n . For the first 

and second references where properties are given as functions 

of P , the distance perpendicular to the axis, the expres- 

sion 

Vn   \        (r/rj)*Z ^fcfrjjJ (3) 

establishes n from the density gradient perpendicular to the 

axis. For the third reference, we use 

n--(^t%H (4) 

■ 
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Values of 7? , the ratio of H calculated from 3 and 4» to 

2/iXj'l)  are plotted in figure (3) as a function of J/S^and 

X/rj . From this graph, it is evident that n is not a con- 

stant but varies both as a function of ty/Qeb and "X/rj  . If 

use is to be made of (1) in calculating retro plumes, then    i 

for each change in X/rV a new value of H must be determined 

from figure (3). 

The variation of fl with^/ö^is not as critical as the axial 

variation since the bulk of the mass flow, which determines 

the plume external stream interaction, lies near the axis and 

therefore the behavior for $/&&* •$    is not significant to the 

interaction. Also, for ^)/6b near zero the density is near 

one for any value of h . Noting this, we then take the value 

of n found at Q/B»~»Z£  to be the "best" value for a given 

TC/r-j . Characteristic retro plume calculations have been 

carried out with values of H determined from figure (3). Re- 

sults of these calculations will be discussed in the sections 

on bow and downstream analyses. 

18 
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ANALYSIS OF BOV/ REGION 

For the problem studied here Ma>« , Moot'0>> 1 and ß;y6; zdj) 

The flow within the internal and external shock layers are 

determined by a perturbation theory for strong shock waves 

and small layer thicknesses. The procedure involves a limit* 

of the governing equations and boundary conditions when 

^e^tö-^O  Mao^Mco^oo  r,j Mie.,Mo^e^oWwhere 

€«,€io  are the density ratios across the shocks at the 

axis. To elucidate some detail of the flows within the la- 

yers, the coordinates normal to the shocks are expanded in 

powers of  €« , €i0        where X,im  are to be determined. 

The orders of magnitude of the various flow quantities in terms 

oi  €*j €£0 and Neoee-* > .^«©t»^«-»  are derived from the 

requirement that the shock relations and flow equations yield 

a nontrivial system which includes all the physical effects 

of interest as 6e,€,-e-vO . The coordinate systems are 

shock oriented and are illustrated in schematic (2) 

r%t 
Schematic (2) 

*This limit will be denoted the N-B limit after Newton-Busemann 
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Upon application of the N-B limit mentioned above, it is found 

that the flow field divides into several regions within which 

unique asymptotic expansions for the dependent variables must 

be determined. "It will be shown in the following analysis 

that four regions characterized by two major effects are re - 

quired to describe adequately the external flow and two re - 

gions characterized by two major effects are needed for the in- 

ternal flow. In both the internal and external layers, a re- 

gion characterized by constant density to first order is formed 

near the axis of symmetry. Away from the axis, the density 

and other properties vary both along and across the layers. 

For the external layer, a region characterized by non-constant 

stream velocity is formed near the contact surface in both the 

near and away from axis regions. This contrasts with the char- 

acter of the region near the shock where the velocity is con- 

stant to first order. 

The regions are numbered one through six in schematic (2)*, 

Once the flow properties are established in each of>these re- 

gions, then matching between the expanded properties will be 

demonstrated to show their consistency and where necessary, 

composite expansions will be formulated. The final step in the 

solution to the bow region problem will consist of the numeri- 

cal matching of contact surface pressure and position (i.e., 

flow deflection) between the external and internal shock layer 

flows. 

* These regions, of course, are not drawn to scale 
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To achieve this result: (i) initial radii of curvatures and 

positions of internal and external shocks will be found from 

a scheme which uses solutions obtained for regions l,3i and 

5 (this scheme will be outlined in appendix (A)); (ii) shocks 

will be extended away from the axis utilizing these radii of 

curvature;(iii) external and internal contact surface pres- 

sure and position will then be calculated, using solutions 

from regions 2, U  and 6. The pressures and positions are then 

compared to determine if numerical matching is achieved; (iv) 

if equality to a certain tolerance is not found, then the ra- 

dii of curvatures are iterated until matching is achieved. 

Having accomplished matching, the procedure starting from 

step (ii) will be repeated using the newly found radii of cur- 

vatures as the initial values. 

A brief outline of the regions considered and their major 

characteristics is now given. 

For region two, which is of 0(6«) in thickness and 0(l) in 

length, the N-B limit gives the familiar hypersonic blunt body 

result, which has been investigated in whole or in part by 

many authors 10,  * 22. The orders of magnitude of the flow 

quantities in this region are the same as those directly be- 

hind the shock.  A major characteristic of the solution found 

is that the velocity along streamlines is constant in the 

first order approximation. This result, adequate for points 

near the shock, has been shown to be incorrect   near the 
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contact surface in region 4; and, therefore, a new expansion 

must be sought. In reference (10) the initial orders of mag- 

nitude of the flpw variables in region 4 were established as 

well as the thickness of this region, which is OC^« /. To 

first order when the N-3 limit la applied, the constant stream- 

line velocity result of the region 2 analysis must be replaced 

by an expression for velocity which accounts for pressure gra- 

dients along streamlines which are found to be the same for all 

streamlines in this layer. After determining expressions for 

the flow variables in region 4 matching with region 2 is then 

demonstrated and a composite expansion is then formed which 

is valid throughout regions 2 and 4. For general shock shapes 

these expressions must be numerically integrated to yield va- 

lues for the flow variables of interest. Having established 

results for distances of 0(l) away from the axis, we nov; wish 

to determine expansions valid near the axis in the N-B limit 

for use in the initial radii of curvatures of the shocks 

scheme. 

In this study, unlike in past investigations,  '  » 22 atten- 

tion is focused on this near axis region because we are seek- 

ing accurate and simple analytic expressions for the layer 

thickness and contact surfnee pressure distribution as func- 

tions of shock radius of curvature to be used in the initial- 

izing scheme.  It will be shown that the near axis region 1 
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will be ofO(€,)in thickness andOC^in length. This reGion is 

characterized by constant density to first order. As in the 

region away from the axis, the first order velocity along 

streamlines is constant. Consequently, as In the away from 

axis case in region 3 near the contact surface we must mod- 

ify the expansions to include the effect of non-constancy of 

velocity along streamlines. The dimensions of this region 

are 0(€^) in thickness and 0(€?) in length. The variables 

found in this region are demonstrated to match with those of 

region 1. A composite expansion for region 1 and region 3 

is then formulated.  Finally, matching between 1, 3 and 2, 4 

is demonstrated for the specific case of a spherical exter- 

nal shock. 

For the internal layer analysis, more details will generally 

be included than for the external flow since this work ap- 

pears here for the first time. For region 6, which is 0(l) in 

length, the N-B limit leads to the results that the layer thick- 

ness and streamline velocity to first order, for non-trivial 

results, must be of OCC^) . Also, the internal shock is 

spherical in form and the first order pressure and density are 

constant across the layer with an error 0(€*/*) These re- 

sults will lead to interesting conclusions, which will be dis- 

cussed at the end of the analysis. The solution found in 6 

unlike the external flow case is valid throughout the shock 

layer for distances of O(l) . For general shock shapes, these 
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equations must be numerically integrated away from the axis. 

As in the external flow case, a region of 0{€U )  in thick- 

ness and of CK^i'o ) in length is required near the axis to 

be used in the initializing scheme. As for the external la- 

yer, the near axis region 5 is found to have constant density 

to first order. A solution technique is then applied which 

makes use of this characteristic to determine analytic expres- 

sions for internal layer thickness and contact surface pres- 

sure distribution near the axis to be used in the initializ- 

ing scheme. Having found solutions for the variables in re- 

gion 5, we then match these to the variables obtained in re- 

gion 6 for the specific case of a spherical shock. 

The detailed analyses for each of the six regions will now be 

given. 
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External Layer - Region 2 Analysis 

Following previous investigations,21 we obtain the orders of 

magnitude of the variables inside the layer from the values 

obtained from the shock relations. These relations are: 

W. = Ue« coscr 

V 

(i.i) 

(1.2) 

(1.3) 

(1.4) 

Non dimensionalizing the pressure byj^U^, velocity by 

Uwe. and density by ^^ , we obtain from (1,1-1,4) 

P 
e 
0 

Vjf.K^ ♦ {l-  a^sm1? 

■ c<as cr 

Taking the NB limit, we find from (2.1-2.4) 

u 

0 

sm   or 

S   ooscr 

&    €.eSlKlcr 

/   «    V€. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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Using the orders of magnitude established by (3,1-3.4), we 

can now write the following expansions: 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

In order that the flow variables described previously lead 

to a meaningful description of the flow, we must stretch the 

normal coordinate y. From the continuity equation we find 

for y 

Since r^oCKjj,} which is set as the unit length scale, then 

y äO(€«). Therefore, to obtain non-trivial results, we must 

stretchy byO(€e).  The expansions of the variables and the 

stretched coordinate y should now be applied to the govern- 

ing equations 

^ fur  i-   "^pvr H    =0 H = 

U^LL     +   Hv^SJL     -   KUV   -I-   4- ^13     = 

X- 
^ (5.1) 

o * (5.2) 

o (5.3) 

(5.4) 
u. 

ax 
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Before substituting in the expansions of the variables, it 

will be advantageous for final integration of the equations 

to change the above system to one employing the stream func- 

tion as an independent variable. 

Def ine '    ^.vp S-t- - Hrpv (6.1) 

The above system under the transformation 

then becomes 

W        bx 

(6.2) 

(7.1) 

Cu*-fv*)/*. -H h * C^^+V^O/ä + h^r    (7.2) 

fVp* - p*/p/ (7,3) 

bar = Hy. (7.4) 

The distance across the layer in terms of f is obtained from 

^tb  > 1  (7.5) 
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In this system we then must add 

r =  To   4   ^eTj. + »   •     t 

(8.1) 

H   s   1   -   KoJj.«€e t   " " (Ö.2) 

Expanded boundary conditions at the shock are: 

Ö   «    cos? (9#2) 

V    «    €« C i + cotig.)   Sin^ (9.3) 

p   ^    l/(€e(l+  cot'«?   ))                   ( (9.4) 

This then gives the result for first and second order boun- 

dary conditions: 

P» ■  smx5        % (10.!) 
Uo    =   cos? Uo#2) 

Cfc * (l ^ COI'IT/H^^SI^? (10.3) 

^ ^ i/Ci+ co-k^/H«*^) do./,) 
pi   * VMcJec -   (A + cot*($/M^e«)sno«? (10.5) 

Öl    . O 0-0.6) 

Ä  « O (10'7) 

^   =    O (10.Ö) 

Substituting (4.1-4.4) into (5.1-5.4) and then collecting 

terms of like order in €e we obtain 

28 

■ ■- . mä i  ,    - - ■ -  



mmrm tmm ■"■■" ■r^w^iw ■■i.iw* 

First Order Problem 

P»- p. Uo.dH' 

Uo m Ue« 

Jy /»»Uo To 

Second Order Problem 

(11.1) 

(11.2) 

(11.3) 

(11.4) 

(11.5) 

Pi = i>i- U^yi -f-L^i -»- kikiiaCk*^r0^^.cos<r)j<JvP (12.1) 
r  r J^ ^ rohx       n - (i2 2) 

UOPD* (12.4) 

Equations (ll.l)to (12.5) describe all the properties of in- 

terest near the shock, with an error 0\fi**J, 

External Layer - Region 4 Analysis 

Bush   hap determined from these results that equations 

(11.1) to (12.5) are not valid at the contact surface due to 

the change in order of magnitude of streamline velocity and 

hence another expansion is required. Following his results, 

we derive the system of equations valid in the contact sur- 

face region with an error 0{ß* V, 
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The expansions for the variables in this region are: 

U.    =    Ce1"   Qo    +    6e tTa.   f    ••• (13.1) 

V     ~     ^e*"  \Jo   +    6^    W   +-    ' * ' ' (13.2) 

p « p.  4 e^pl* • • * ' (13-3) 
f>  =      f*/**.   +   fl    +   ' ' • (13.4) 

»-   =     To 4   6.^^   ^ .. • (13.5) 

H  ^     1    +    KoJo€ft
Va +   ••" (13.6) 

7C = X (13.7) 

u    =.     €eVxf (13.0) 

These will be substituted into the governing equations  (5.1) 

to  (5.4).    The resulting systems of equations are: 

First order system of equations 

li = 0 (U.I) 

fc/js; ■   ^t/jS;* (i^3) 

Second order system of equations 

^    =0 (15.1) 

Uob^ +   Ux^Ug.    ^  Vo^Oi   +Vl^.    4- (15.2) 
^^r d^. ^tr §7f 

(15.3) 
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We can extract from (lif.l) to  (15»4) 

First order results 

fo   *  $oW (16.1) 

LTO*   = UOJ    - 2poy^   InRo/^t       (16.2) 
(16.3) 

Second order results* 

pi  *   fU**) (17.1) 

a.UoUi = 2.0*31* "  ^^ ^ %"• *" (17-2) 

(17.3) 

Po« 

These body layer results must be matched to the external la- 

yer region 2 results in an intermediate region where both ex- 

pansions are valid. 

* ul is not considered since it does not affect the calcu- 
lation of p>UL. to error greater than ofct'Vand is itself very 
small ofoitjf. 
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We now demonstrate matching for the variables PiP   and   U. , 

Matching occurs within the intermediate region defined by 7J 

In this region   . 

CO 

^ £ 
In terms of the variables f^ and^^withy, 9 of 0(l)we have 

from the expression for layer thickness, (7.5), 

The order of 77 must then fall in the range 

0C€^)< ^ < 0(1) 

23 
Following Cole ^f matching will be achieved if for each power 

of €e we have 

where T   is the variable of interest to be matched. Taking 

the matching of the pressure first 
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Therefore, the pressure in the body layer is equal to the 

pressure at the inner boundary of the external layer. A com- 

posite expansion valid in both regions can be determined by 

subtracting the common term to both expansions which is the 

pressure at the contact surface. The correct pressure dis- 

tribution will then be that derived from the external flow. 

For matching of the density, we must have 

From (16.3) and (17.3) we have 

Since p0 and pi are just functions of <J) thenpC®) ; there- 

fore 

U   (pCf) - pC^.o)) ^o 

The density within the body layer is then equal to that at 

the inner boundary of the external layer. As in the case of 

the pressure distribution, the uniformly valid density distri- 

bution is simply given by that derived for the external layer. 

The velocity now has to be matched. Once again, as for p and 

P , we must find 
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For the body layer, we have 

^ = -^ te.   -P1« -0 

Under the abcve conditions   U from (16,2) and (17.2j  becomes 

__£A_(Iv^)(^)-^(fx1iPe-i)) _ 

Cter1)1^^) 
The near shock expression for the velocity is from (11.3) and 

(12.3) 

u --• e* - 6^ ^ In FV^ 
©*   /am 

For matching in the intermediate region f\    we transform the 

independent variables such that 

e** * £*?i7|*  ^ CD 6C ^ o 
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The matching condition then becomes 

(4,3.  -k&.c''* -Ünl^lfi^^-•) 

The above can be seen to match to error  0\€.e j • A compo- 

site expansion valid in both regions is then 

a. Ce** - Z€elnp0cf,o))    - 

The layer thickness can now be calculated from 

^r -r v 
A3L 

Jrs   ?U 

(18.1) 

Once the radius of curvature and position of the shock are 

known, then all the layer properties may be calculated. 
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Now that we have the results for the external flow away from 

the axis, we will now determine if they apply in the region 

near the axis. 'From the external flow, the velocity parallel 

to the shock is given by 

UL = 6* - ^£e\n fo C^>0) 

As we approach the axis both <J) and Q^  , as well as ©^ be- 

come smaller than 0(1) . For this situation, the expansions 

based on the above quantities being of order one are then no 

longer valid and new expansions must be obtained. It is of 

importance to develop an accurate solution in this near axis 

region as the final matching of the external stream layer flow 

and jet layer flow depend on knowing the initial locations 

and radii of curvature of the shock surfaces near the axis of 

symmetry. 

External Layer - Region 1 Analysis 

To establish these initial values for the external flow, it 

is convenient to determine the shock layer thickness and con- 

tact surface pressure distribution in an analytic form. This 

leads us to describe the external shock as an expansion in 
A. 

even powers of CD for the region near the axis. The expan- 

sion is 

R ^  1 4- Oe ^  + U ^M + 
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It is sufficient to retain only the first two of the above 

terras for accuracy consistent with the number of terms in the 

dependent variable expansions. The expansions for the de- 

pendent variables which give the relevant physical behavior 

in the near axis case and are consistent with the shock re- 

lations are 

p •=■    pj    +     €e pi    ^    ' ' • 

f «   jV/cc +   ft' -»"   •••" 

u -     €eyt IV    +    €<?*  Ut' +  • 

V -       £e Vo'      +       6^  Vi'    4" 

X -      ^/aX'             U,   =    €.eH 

Inserting the above in equations (7.1) - (7.5)» we obtain for 

the first order results 

"^    =0       ^          f (19.1) 

Po'/fo'    «    ?**/fi* (19.2) 

Uo'   »   1^0* (19-3) 

Vo'   -   Uo' W (19.4) 

^'--fjir  ( 
ö        J0 />.'u6' r.' 

For the second order, we obtain 

r6'^=^u0'+^ (20a) 

(20.2) 
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a ' = f W     (fit + MJ: + Ül)     (20-U 

The boundary conditions obtained from (1.1) - (1.4) are 

For R»l-»-<u3)' (19.1 to 19.5) and (20.1 to 20.4) give for 

first order 

,'    =_JL 
C i - x«.) 

For second order, we have 

Ci - ?w/^) 

(21.1) 

(21.2) 

(21.3) 

(21.4) 

(22.1) 

M- *•   Cq-aMfi^'-^' - A. (1 - (9^')")) 

a-^Xr-^Vs- U -C9.7?')H)A))(22.4) 
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External Layer - Region 3 Analysis 

As in the case away from the axis, we must develop a body 

layer solution near the contact surface. The relevant ex- 

pansions for the variables in this region are 

p - po" "K €e p*" + 

Substituting the above in the equations (7.1) to (7.5), and 

collecting terms of like power in €« , we obtain for first 

order results 

W' (23.1) 

poVfo" = pA/f^, (23.2) 

For second order results 

■ö£i'  -o 

Uo'""  =   U."*'  -I- At Pit    - Pi.") (24.2) 

The boundary conditions which must be applied are 
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Thf; final results which must be matched to the near axis outer 

region.case are then 

a ~»' 
po     *   po CX) l (25.1) 

jo,,"   «  jOo^Cx) (25.2) 

Pv"    «JH."CK) (25-4) 

Following the same procedure as in the away from the axis 

case, matching requires that 

p.'cx) - p.' • 1. (26a) 

fo'Cx) = p0' = 1 (26 2) 

pi' = pk$,0) - - C-k *^"(1 ■*uf- FfcO (26! 3) 

fi' =/iC^ = -^$'*(l-*«0* + ^      (26.4) 

The values obtained for (26.3) and (26.4) are simply those de- 

rived from the near shock region expressions evaluated at the 

contact surface. The value of U© is then 
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Matching to outer layer results, we require that 

\\*n       ( U' - U" ) ^ O 

97,71 

2. 

Expanding the square root 

9nn 

**  From boundary conditions derived on the basis of mass flow 
through body layer 
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It is seen that matching is assured. A uniformly valid re- 

sult for velocity in both regions is then .. 

a((l-aA.r^:% ^6eC0t^2a.r- i)f (27.1) 

Using the uniformly valid results, we calculate the layer 

thickness from (22,2)     (27.1) and (7.5), which gives 

aA€) 

o,a> 

+ ^-^.X^-H+3fe^' (2Ö.1) 

The contact surface pressure distribution is given by (21.1) 

and (22.1) 

Expressions (28.1) and (2Ö.2) are then used in a scheme, out- 

lined in Appendix A, which determines the external shock ra- 

dius of curvature and position along the axis of symmetry, 

for given external flow and jet conditions. These values are 

then used as initial conditions for determining flow proper- 

ties away from the axis. 
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The solutions found for regions X and 3 as the variable 

<J tends to infinity must match the solution found for re- 

gions 2 and U as  y    vanishes. If matching is achieved, then 

we have proof that the expansions for the region near the 

axis was the correct one. 

For this analysis, a composite expansion for the near axis 

and away from axis regions is not sought. Therefore a match- 

ing of these regions for the special case of a spherical shock 

will demonstrate the consistency of the expansions and will in- 

volve a much smaller calculational effort than if the general 

shock case were attempted. 

The away from axis results, eqiiations (12.1), (12.2), (1Ö.1), 

for a spherical shock and small CD are 

-   i - 
2. •9 

ta ^S-    3 ^     H<€« 

3 •fl 2 

i  " ^U - 1 
) 

9. 
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The near axis results for a spherical shock, a. = 0 > from 

equations (27.1), (21.1), (22.1) and (22.2) are given by 

p= 1 - «U/SL -V3€e^'1 + ee9;V'3^'+ €e/M^. 

Following the same matching procedure as was outlined for re- 

gions 1 and 3 and 2 and 4, we define a variable 9| which des- 

cribes an intermediate region where both the away from axis 

and near axis expansions are valid. For this case,0(€t ^<0(l) 

and therefore for U matching 

Matching is assured for U . 
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For p we have 

Therefore, matching of p to this order is assured. 

For p we have 

Therefore, matching p to this order is assured. 
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Internal Layer - Region 6 Analysis 

We start the analysis from the shock relations, which are: 

u « Uoöi cos>6 
A     ^ I i        A 
V * € Uooj s«n/S 

(29.1) 

(29.2) 

(29.3) 

(29.4) 

(29.5) 

Unlike the external miform stream case A»t*i f-'«»^ ^»i are not 

constants but functions of the undisturbed plume flow. Their 

functional relationships are determined by the assumed source 

distribution 

a.   3.$oo 

pooi      -   fooü>Cf ooC/^0040)   ' y. 

(30.1) 

(30.2) 

(30.3) 

where n ■ b/Ofi- i) 

We now expand the boundary conditions fore^O^MoD-*« such that 

OC1-/     . This will then indicate the orders € i» fieo. 

of magnitude of the variables within the layer near the shock. 
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It is hoped that the orders of magnitude found for the vari- 

ables will be valid through to the contact surface. If this 

is not the case, then the solution based on the orders of mag- 

nitude near the shock will break down and a second expansion 

valid near the contact surface will be required. Expanding 

the undisturbed plume parameters, we find that 

When applied to (30.1),(30.2) and (30.3), we obtain 

JW V»'.-flliL ~ 0(1) (31.1) 
Ni ' f»» ^^ ~ ^ (31.2) 

**'Ui^{~*g<^-** ~0fe)(31- 3) 
The first oraer expressions,   (31.1),   (31.2),  and (31.3),  are 

then introduced into the expanded form of the Rankine-Hugoniot 

relations,   (29.1),   (29.2),   (29.3),   (29.4)  and (29.5), which 

then give    the order of magnitude results 

jo - q^fooc'. p - OCO/^UA 

where 9 is the angle the free stream makes with the direction 

normal to the shock. 
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At the axis of symmetry, 6i« is the density ratio across the 

shock and is given by 6U = ^=A *  J^ '    UP  t0 

this point, the magnitude of the velocity U  parallel to 

the shock has not been determined in terms of €i. ; however, 

its lower bound can be determined from the condition that the 

shock layer is of zero thickness in the limit as €^-»0 and, 

therefore, the flow must be turned 90 degrees upon crossing 

the shock. The deflection angle is 6:Lven by 

:an 

where   ^5 = 5* " ö for near normal shock e«i riooi^i 

6 -tan §    s    r^7^ batne     = __  
oo 

This then yields 

I ir*\ e_ ^ «> 

We can conclude that    3 > O(€i0    and is obviously less than 

0(1)      •    This result  can be written as 

The dependent variables can now be expanded in terms of   6to  , 
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following the first order magnitudes found from the shock re- 

lations.    The non-dimensionalized expansions will then be: 

K      -, 

It is assumed that X will be of order one, from geometry,and 

^  will depend on €co to some power n' The unknown pow- 

ers m and n' will be determined by requiring that the govern- 

ing equations, when written in terms of £CC  , yield a physic- 

ally reasonable non-trivial system of equations. The govern- 

ing equations are: 

"^X     •'"öit. continuity 

Ulx + HV^ "" lCWV + j^lfe =0    X momentum 

momentum 

energy 

where K  is the radii of curvature of the shock surface and 

H'l-K'jJ. is the ratio of the radius of curvature of a constant 

£ surface, with respect to the shock curvature at a given 

value of x. 
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Substituting the expansions into the governing equations, we 

obtain the follovd.ng results relating the unknowns m and n: 

X momentum 

> momentum 

continuity 

Applying the source condition jiRa« 0(1 jwe find that 11» = i. 

It then follows that n = ^ from the other two relationships. 

Since 6 * E-yö is now found to be proportional to € io  » 

then in the limit as €io-*Q ,  J&    must equal TT/g, .  The 

shock surface is then a spherical shell which is centered at 

the jet exit. The magnitude of the perturbation from this 

spherical shell v/ill then be derived by the use of the known 

value of 6-0(6i» ). The radius can be written as Rrl^-GCx) 

From this, the value of Ö  can be calculated R.Cx) = GkO= ^<a^ 

The magnitude of oCX> is then O^c'oV which then leads to 

the result  R(x> - 1 ■♦■ FCx> £{* .    This will be the 

form used for  R<x) . With the values of no and n established 

the expansions are 

.Va 5 ■« f>0 + Pa.€io
V' -♦- pt€w + • " ' 
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The flow equations become considerably simplified for inte- 

gration across the layer if they are written in terms of the 

Mises variables TC^ V . 

The distance downstream is X and f is the streamfunction. 

The flow equations 'In this coordinate system are 

Hr|fe = K^ ^ ^ (32.l)u.momen- 
0^ a* turn  equation 

(32.2) inte- 
grated X mo- 
mentum 

p/f* =  bC^) (32.3) energy 
equation 

— —  T (32.4)stream- 
function defi- 
nitions which 
satisfies con- 
tinuity direct- 
ly 

H - 1 - K-jj, 

^ « H^ (32.5) 

After substitution of these expansions and introducing an ex- 

pansion for ^ and K in terms of X and T and collecting 

terms of like order, we then develop the following system of 

equations. 

First Order Expressions 

Momentum equation across layer 

"^ft. = O (33.1) 
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Integrated momentum equation 

uo1 -  Uoi   - a.?»* \n Rt (33.2) 

Integrated energy equation 

pw*/b 

Definitions of streamfunction equations 

(33.3) 

^Ho    ~    -  i  (33.4) 

Definition of streamfunction 

"bvAfi.  _ Vo (33.5) 

For the second order results, we obtain for the momentum 

equation across layer 

lEi. =■ K.QUo (34.1) 

Integrated      momentum equation 

^UoUt   -   iUo^VJt» -   ^.po^  pt (34.2) 
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Integrt-ted energy equation 

pi • fi (34.3) 

Definition of streamfunction equations 

Definition of streamfunction 

(34.4) 

A"      0 Uo     Ue      U0a- 
(34.5) 

For the third order results, we obtain momentum equation 

across layer 

) 

Integrated  momentum equation 
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Integrated energy equation 

^-Pfr -£+(£)    -J£ - $£ 

6.V V fei 
(35.3) 

Definitions of streamfunction 

^VU 1 l¥ ^oUo»^ 

(35.4) 

We must apply the expanded shock boundary conditions to the 

outer edge of the l.?yer. In the limit as €to"*0 , MOö^-^OO 

such that  ^u» Mä^ -* öC1) we obtain 

First order results 

Hffl. 
Xoa 

■s     COS 
4 

■   cosn HOI 
2.Ö« 

u.    =    F'cf) 
v.    =    l 
9.    «   o 

Second order results 

(36.1 ) 

(36.2) 

(36.3) 

(36.4) 

(36.5) 

cos pt =   -3.F 

_pi.   -   -ZF cos*1 Tr|' 

00 
(37.1) 

(37.2) 
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Ui   a     - F  F (37.3) 

u,i=0 (37.4) 

Third .order results 

b^'Ör»-iy^Ci - F/r') (3ö.2) 
Gt = FF' - F'V^ (3Ö.3) 

u2    =   O (3Ö.4) 

Before we integrate the equations, we introduce another 

transformation of the independent variable 4^ . This vari- 

able describes the streanfunction in terms of the position 

at which the streamline has crossed the shock.  It is de- 

fined from the source conditions as: 

H7 =1 cos^JTJi sm9* dy»       (39.1) 

A point within the layer will then be described by the co- 

ordinates ( 9> 9* )  • Substituting (36.1 to 39.1) in the 

equations (33.1 to 35.4) and integrating across the layer 

we obtain 
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First order system 

p. - 

Uo 

V0 

^a   Cos 'Hffl 
26» 

=    CPS ae» 

9« 
-    Uo   0^-° 

Second order system 

,9 

(40.1) 

(40.2) 

(40.3) 

(40.4) 

(40.5) 

Ul   "   Z^C-2F/2F   -    ^P^/Ro) (41.2) 

ft.     -     p^ (41.3) 

Third order system 

cos C3FX -i-  F/a + 

9, 
■39 n,- 

p.« (42.1) 
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(Px^/po* - fa*/po)» "^ ä^ln^))  (42.2) 

•Tu    Cu 

^   J»cr0   Jtt       v^)      ^       K  (42#4) 

Examining the above integrals, we note that the calculated 

variables remain finite and non-zero from the vicinitv of 

the shock through to the contact surface. This indicates 

that the solution is uniformly valid.  '7e now must exam- 

ine the behavior of the solution as we approach the axis 

of symmetry. This is important since in order to evaluate 

the matching of the shock layers we must determine the ini- 

tial radius of curvature of the shock surface, as well as 
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its position in space. This requires that we know both la- 

yer thickness and contact surface pressure in an analytic 

form so that the matching of contact surface pressure and 

position can be determined. For the case when KOO • 1»0 

the variables can be expanded in even powers of fl) near the 

axis, and then integrated across the layer. These results 

will then be used to illustrate the change in order of mag- 

nitude of some of the dependent variables near the axis of 

symmetry. 

From the source conditions, we can write for small <pw t  y 

?* -- f° -- 1 - Käg 9 
which then leads to the first order results 

The second order results then become 
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It can be seen that  as we approach the axis    Q*, § -* OfeX*) 
and 

V   C:   6.0Vo    ^ OC£co) 

jo   - fo/eco +pVeco^  - 0(1/^0 + 0C1) 

The change in orders of magnitude of the variables then ne- 

cessitates that a new expansion procedure be applied. To 

first order p^  and V do not change; however, U and ^C 

are altered and the new expansions must reflect this. 
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Internal Laver - Region 5 Analysis 
The shock position in this region is described by an expan- 

sion in terras of even powers of 9    away from the axis;i.e.f 

Based once again on the shock relations, we can expand the 

dependent variables in the form 

u •= £coüo + ec^Ux ■*•••• 

p    =    po    +   €copi. "»•  * *   ' 

jo   = pe/eto + ?* •»■ • •• 

Substituting the above in the governing equations, we obtain 

the first order system 

These are of the same form as the constant density flow equa- 

tions. 
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V/e therefore apply a constant density flow solution method 

to this first order pystem. A streamfunction is defined 

which will satisfy the continuity equation identically. This 

is 

>f = -F.ÜO        "^t = r.vi 

If 4^ is known throughout the layer, then Uo and Vo can 

be calculated. The equation for S^ to this order of approxi- 

mation is 

V/here 5 is the vorticity within the layer. For an incom- 

pressible flow, the circulation must remain constant through- 

out the flow region and this leads to the constancy of the 

product of vorticity and distance away from the axis. Not- 

ing this, we can then develop the vorticity inside the layer 

in terms of its value at the shock and its radial position 

within the flow. The result is 

The equation that must be solved is then 
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Substituting in a streanfunction of the form 

(44.1) 

we find from (43.1) that 

A—^feX'S 
From the definition of the streamfunction we have 

^ = 7& (45.1) 

From (45.1) we find 

(46.1) 

At Uo ^ O which is the shock surface, we have Vo = 1. 

which then gives from (46.1)    C - l/X. 

From (45.2) we find - (n^ftMac)^ + D + Gf * = -Po Uo 

at the shock  u;e = O   Uo « tLO.i<S>      and from (47.1) 

we obtain 
1 

r> « O      G = - ^ai 
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Thfioe results then give us the first order velocity compo- 

nents in this region. 

and   p0 = p0 s 0- 

The normal coordinate ^ to first order as a function of ft*, 

and (f can now be calculated from 

Substituting in V© and U^ in (49.1) and integrating, we 

obtain after applying the shock boundary conditions 

or 

The pressure field can now be calculated from the known ve- 

locity field given by (40.1) and (43.2). V/e must integrate 

the strearawise momentum equation to obtain the variation of 

pressure along the streamlines with velocity. Tlr.s result is 

— a.n'a.        -r-a.TT* Uo+Vo    =   Uo**^   -   ZCpi  - Pi*) (51.1) 
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From the shock relations 

Applying this to (51.1)i we then obtain 

-(l -^^-C^^MaO^)^ (52.1) 

From the conservation of entropy along --.treamlines relation- 

ship, we also have 

JDi = p* - fr*     +J^ (53.1) 

Making use of the value of pi-pi^and noting from the shock 

relations that Jpt*-  ~ CJa'(ikJ''*''^v9* ";e cari then write 

for (53.1) 

The complete expansions for the dependent variables in the 

near axis region can now be written 

u. = eicUo  + o(ec0
3) (55.i) 

v   = euv.   ^ OC^to3) (55-^ 
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(^.(gJV ^)f*1 + oCe.o)      (55.4) 

These variables in the limit as 5;^ tend to infinity must 

match the variables obtained from the equations away from 

the axis as the variablesCpj^ vanish. If matching is ac- 

hieved, then we have proof that the expansion for the region 

near the axis was the correct one. Since in this analysis 

a composite expansion for the near and far away from the axis 

regions is not sought, then a matching of the solutions for 

a special case will be adequate to indicate the correctness 

of the expansions and will be easier to perform than a gen- 

eral matching procedure. The special case chosen is that 

for a spherical shock. For this case ölt - O and (the inner 

expansions can be written as 

■ (56.3) 

(56.4) 

U = «i,nfej)'?i. + O^i)' 
V = 6-Ci- "(^.V0^ 
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For the away fron axis region, we have the following equa- 

tions for small , (p, (pt '* 

P = 1- 'k&S**   ^O(€t0 (57.1) 

f =C1 " «fe)*?^ + 0fei-
a)    (57.2) 

U = €^ Wg^9(l - 0W5)a)%+ OfeJ (57.3) 

Following the same matching procedure as that for the exter- 

nal layer flow, we define a variable^ which describes an in- 

termediate region where both the away from axis and near axis 

expansions are valid. 

Since  ^ = OCD and  $ « oigj'9')      then o(£Ä fl < 0(1) 

In this region, we have 

then  hi^ (f -* O and  li»v»   ^ -► oo 

Applying the above limiting procedure in the region of common 

validity, we must have 

.'/here fo and fi   denotes the various expansions for the vari- 

ables for the outer and inner region respectively. 
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Matching V 

In the'intermediate region, it is known that 

Therefore the above is zero in the limit, assuring matching. 

Matching U we can write 

Again, making use of the expression for U^ we obtain match- 

ing for U. . 

Matching P 

Introducing U© again, we then achieve matching for P 

The above matching process has demonstrated the c^r  ^tness 

of the near axis expansion. V/e nov; use the more general ex- 

pansions, (55.1to 55.A-) to determine the layer thickness and 

contact surface pressure distribution near the axis. The 

results are 
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c* = H^'^ ^5;^ ^   fc> = ^(§5$+^-**^ 

These expressions ( ^ and p ) will then be used in 

Appendix (A) to derive matching conditions for the internal 

and external layer near the axis of symmetry. From this pro- 

cedure, we can extract internal shock and ?xternal ,shock ra- 

dii of curvature and the positions of the shocks in space. 

This information will be sufficient starting conditions for 

an integration across the layer of the away from the axis 

equations.  By this procedure, the full bow region, from the 

axis to the corner region, may be calculated. 
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DISCUSSTO:: 07 ^SULTS 

From the analytical bow region results scaling parameters are 

defined which can be used in experimental simulations and in 

extensions of calculated results to other conditions. They 

can be'obtained by examining the first order results of the 

bow analysis.  For the internal flow, we find to the first ap- 

proximation that the geometry of the layer (i.e., shock posi- 

tion and layer thickness) depends on the parameters h , e;0 

GcoCM^en,^) and RscoCr^e«, n, *,-)        .  To thls list( 

we must add external layer parameters €e and R8e . How- 

ever, from the matching of contact surface position, it is 

determined that R8c is a function of Rs^Go^n^ and there- 

fore only €e is added, giving as the significant defining pa- 

rameters of the bow region Goo, n;eto , €e , R»^   . These 

may be further reduced if we consider very high Mach number 

flow for which €:ic  and €* reduce to *,* and Xe . The geo- 

metry of the flow is now independent of stream Mach number. 

For a correct experimental simulation, all of the above para- 

meters should be matched between the actual system and the ex- 

perimental setup. 

Also, for a given system with fixed ambient and exhaust gas 

composition (i.e., fixed ^j, fce ) and nozzle conditions (i.e., 

fixeiGo^n ) the bow geometry will scale with Rsto or T^for 

all flight conditions (i.e., altitude, velocity) and system 
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thrusts (i.e.jFoj).  This last effect is illustrated in figure 

4 which compares in a coordinate system which is reduced by 

the scale Ksio experimentally determined -3''»z^  bow region 

geometries obtained at different values of TT .  Also shown 

in figure (4) is a comparison between experimental results 

carried out at nearly the same TT but with different exter- 

nal flow Mach numbers.   As can be seen, the agreciucit in 

positions both for varying TT and Mo6e is very good, indi- 

cating that the scaling parameters are correct, and also that 

fo^ high Mach numbers the geometry is effectively independ- 

ent of stream Mach numbers. 

The correctness of the scaling is further substantiated by ex- 

araining /.igure (6) in Charwat and Faulmann .  In this figure, 

many experinental values of axial bow layer thickness divided 

by »^stoare plotted versus Tt . For both Mooe = 2.75 and 7.1 

it is shown that the above ratio becomes constant as TT becomes 

large, indicating the correctness of the scaling parameter 

Rsto . It should also be mentioned that the value of the 

ratio reached for TY»! and M«öe = 7.1 is in agreement with 

the value obtained from figure (4). 

Having established that the geometries of the shocks and con- 

tact surface are fixed in a reduced coordinate system, we then 

note that to first approximation all the nondimensionalized 

flow variables will also scale since they are only functions 

of ^pi^/R-jio, ^^©oo^ji^ev.'hich are fixed quantities for any 
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given point in the flow if the nozzle conditions and exhaust 

and ambient gas composition are fixed. 

Another result of the analytic analysis of the bow region is 

that it defines the accuracy of the Newtonian impact approxi- 

mation which was applied by Laurmann to this problem.  In 

his technique, the contact surface position is determined by 

the I dancing of Newtonian impact pressure along the contact 

surface. 

This approximation has been shown to yield good results for 

surface pressure for the external bow region flow 2^. 

For the internal bow region layer flow, we must examine our 

analytic solution to establish the accuracy of the Newtonian 

impact theory in describing the surface pressure. From the 

first order results, the layer thickness is a constant.  Also, 

to first order pressure is constant across the layer. The 

actual contact surface pressure will then be determined by the 

shock shape, which for constant layer thickness is the same 

as the contact surface« Therefore, we would expect the New- 

tonian impact analysis to give reasonably good results for 

the internal as well as the external flow contact surface pres- 

sure. The contact surface shape in the bow region,as deter- 

mined by the matching of the impact pressure across it, should 

then be reasonably well predicted by Laurmann's analysis. 
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To test this hypothesis the contact surface position predict- 

ed by Newtonian impact analysis is compared in figure (5) with 

the predictions made in this study and in reference (7) for a 

characteristic bow interaction. The agreement shown is very 

good, indicating the usefulness of this approximation to quick- 

ly obtain bov; region geometry. The success of the technique 

in this axisymmetric case gives one confidence in extending 

this simple technique to asymmetric bow region flows where 

the angle of attack of the jet to the free stream is not large. 

For the transonic corner and supersonic far field regions, 

Laurmann's  technique must necessarily fail due to the thick- 

ening of the layers and the acceleration of the flow in these 

regions. 

A number of calculations of the bow region flow have been car- 

ried out, utilizing the analyses outlined in the preceding 

section and in Appendix A. These calculations have attempted 

to: (i) compare predicted bow interactions with results from 

a:i existing numerical technique; (ii) compare predictions 

with an experimental result by Zakkay ; (iii) determine the 

variation of bow region geometries and pressure distributions 

with variations in So* and ^j (primary jet flow parameters); 

(iv) give detailed predicted properties for two cases which 

are characteristic of "cold" Jet and actual jet operation. 
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In the comparison of the present predictions with those of 

Rudraan and Vaglio-Laurin' identical stream and undisturbed 

plume parameters were utilized.  Predictions, v/hich included 

terms with errors 0(€^) and oCfic« j\;ere made of flow field 

geometry and pressure, as well as the other variables of in- 

terest.  As can be seen from figur« (6), the present results 

and those calculated by the nuruerical technique of reference 

(7) do not agree very well in position, although shapes are 

similar.  Also, the comparison of pressure distributions in 

figure (7) do not agree very well. There are two possible 

sources of error which could cause the poor agreement shown. 

The first possibility is that the example calculated, with 

2«jtfj = 1.4 is just too difficult a test for the present the- 

ory, which is based on having JU^y a 1,0, Since the internal 

flow solution proceeds in half powers of €,:«, then for the ex- 

ample calculated terras higher tnan the first are really not 

very small. This causes poor convergence of the solution, 

which is indicated by diminishing oscillations of the vari- 

ables about their correct values as higher order terms are 

added to the solution. This type of behavior is observed in 

figure (7).  However, figure (6) does not show this effect; 

and, therefore, this cannot be the total explanation for the 

lack of agreement. 

A possible source of error in the technique of reference (7) 

is the imposition of a point interaction (i.e., non penetra- 
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tion) for the corner region in the calculations of reference 

(7). As will be explained further in the section on the cor- 

ner region, the point interaction assunrption puts a constraint 

on the bow region calculation, which could possibly over-em- 

phasize the corner region flows upstream influence on the bow 

layer properties. This could result in the large difference in 

internal layer thickness which is observed in figure (6). Tak- 

ing the above two effects together, it is possible, within the 

bounds of error of the present results, to show agreement bet- 

ween geometry and pressure distribution. 

It should be mentioned that the results of reference (7) have 

been compared favorably with the experimental results of Zak- 

kay . However, the comparison is not definitive since the 

analytical plume flow model used had an exponent of 2.5, which 

has been shown in the section on jet exhaust models to be in 

large error for the case calculated. 

Good agreement between the prediction of bow region geometry 

and the experimental results of Zakkay7 is shown in figure 

(Ö). No linear scale was given in the experimental schlieren 

photograph; and, therefore, it was necessary to arbitrarily 

scale the experimental and predicted results by setting the 

jet to internal shock distances equal to each other. The 

contact surface pressure distribution for this same case is 
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shown in figure (9). Two other calculations were nade for 

these same conditions '.ith the only difference being that 

in the analytic plrjne model, exponents H = 5.0 and 2.5 were 

used instead of the more correct 4.17 value.  In figure (10), 

these -predictions show a narked sensitivity of bow region geo- 

metry (i.e., shock ard contact surface position) to plume 

model exponent. The variation of the bow geometry with plume 

exponent is larger than the error bounds of the solution in- 

dicating that if accurate predictions of bow region properties 

are to be obtained then the plume model used must also be very 

accurate. 

In noting the good agreement between the predicted and experi- 

mental geometry, one is tempted to state that the calculated 

flow properties must also be in good agreement with experi- 

mental values.  However, this is risky in that experience with 

co-flowing plumes and the good agreement of the calculated 

results of reference (7), using an incorrect plume model, with 

experimental results show that the coarse geometry of the 

interaction (i.e., shocks and contact surface) can be pre- 

dicted relatively easily but in all probability the detailed 

experimental flow properties are not so easily matched by cal- 

culations. 

Figures (11), (12), (13) and (U) show the effect of varying 

ÖOö and Qj on bow geometry and contact surface pressure 

distribution. 
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From figure (11) it can be seen that increasing Goo from 125.5 

degrees to 105.0 degrees, which could be accomplished by eith- 

er increasing On or decreasing MJ f results in a definite 

increase in layer thickness both for the internal and external 

flow. • Since external layer thickness is directly proportion- 

al to contact surface radius of curvature, then an increase of 

layer thickness indicates an increase in radius of curvature. 

Consistent with the increase in contact surface radius of cur- 

vature, we note from figure (12) an increase in contact sur- 

face pressure with an increase in ©•. In general increases 

in G« with all other parameters fixed give increases in 

contact surface radius of curvature, yielding a more blunt bow 

region interaction.  In figures (13) and (14) we can see the 

effect of increasing "fcj with all other parameters fixed. In- 

creasing 8j from 1.2 to 1.4 in figure (13) causes a definite 

thickening of the internal and external layers. Also, from 

the contact surface pressure curves in figure (14) we note 

that increasing tfj results in an increased pressure level. 

Both of these effects are primarily the result of an increase 

in radius of curvature of the contact surface. In conclusion, 

an increase in either 0«oor oj for all other parameters fixed 

causes an increase in rac.ius of curvature of the contact sur- 

face resulting in a more blunt bow interaction.  In this case, 

pressure, density and temperature within the layers do not 

decay as rapidly as in the less blunt interaction case. 
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In figures (15-13) detailed distributions of flow properties 

for a "cold,, jet and actual jet operation are given. The cold 

jet case, shown in figures (15,16) would be representative of 

a wind tunnel simulation where the ratio of jet to freestrean 

stagnation temperature is 2.0 and air is used as the jet gas. 

The actual jet case shown in figures (17,lS) is representative 

of a real system that is operating at 150,000 ft. altitude, 

whose jet gases are composed primarily of H20 and C02  which 

is modeled by setting #j « 1.24 . The ratio of jet to free- 

stream stagnation temperature is .75, which is representative 

of the actual system. 

As can be seen from figures (15) and (17), the flow geometry, 

streamlines and isobars for the two cases are very similar. 

However, from figures (16) and (10) we note wide differences 

between the two cases.  In figure (16) it can be seen that 

the velocity discontinuity between the internal and external 

flow is very small at the contact surface and consequently, 

mixing effects along it will be small. '.Je  also note a mode- 

rate jump in density as we go from the external to internal 

flow.  Since pressure is equal across this surface, then the 

above result indicates that we have a less dense and hotter 

external layer flowing past a more dense and cooler internal 

layer. In figure (IS) we note some significant differences 

from the "cold" jet case of figure (16).  Here, we find that 

there is a large velocity discontinuity which leads to strong 
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mixing effects.  Also, the very large discontinuity in den- 

sity indicates that a very hot and low d(   ty external layer 

is flowing past a much cooler and denser internal layer. 

If heat transfer v;ere allowed, there would be a heating up of 

the cooler internal layer by the hot external layer.  It can 

be concluded that in the actual case mixing and heat trans- 

fer effects will be much larger than the experimental simula- 

tion case. 
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ANALYSIS 0? C0R1TSR REGIOM 

For an exact treatment of this region, the inviscid external 

and internal layer bow flows, as well as the relatively mo- 

tionless cor^ ind the viscous mixing region separating the 

core and bow flows, must be simultaneously calculated. The 

reasons for utilizing this coupled approach have been discus- 

sed previously in references (2) end  (3).  Such a complex 

treatment is beyond the scope of the present study and sim- 

plified analyses are applied. Unlike the bow region and down- 

stream region analysis (to be discussed), the corner region 

flow is not amenable to analytic treatment because of its 

transonic nature and complicated coupling with the core flow 

and the viscous layer separating these regions. 

An approach is then taken which will provide an estimate of 

some of the flow characteristics within the corner region and 

will also assess the significance of the corner region flow 

on the bow and downstream region solutions.  In brief, this 

section will outline:  (i) the significance of the corner 

region flow on the bow region and downstream flow properties 

as calculated by their respective analyses; (ii) an engineer- 

ing estimate of the pressure level in the core region; (iii) 

the location of the plume boundary based on this core pres- 

sure; (iv) the qualitative penetration of the intercepting 

shock layer mass flow into the internal layer, and the loca- 

tion of the internal layer sonic line. 
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Before establishing the significance of the corner region flow 

to the bow and dov/nstream flow solutions, a brief description 

of the flow in the corner region will be given.  Referring to 

figure (19), the jet gases upon exiting the nozzle expand in- 

to the- low, nearly constant pressure core flow.  An intercept- 

ing  shock and shock layer form which are identical to those 

for a plume in a quiescent ambient of the same pressure. This 

intercepting shock and layer eventually intersect  the strong 

internal shock, resulting in a triple point shock configuration 

similar to that found at the Mach disc for plumes in a quies- 

cent or co-flowing ambient. A complex system of shocks and 

expansions are then generated within the internal and inter- 

cepting shock layer, which accelerates and turns the flow in 

the downstream direction. The viscous layer separating the 

core and internal flow reattaches at a downstream location, 

recompressing the flow to a pressure greater than that of the 

core.  All of the above flow processes interact, establish- 

ing a unique geometry for the corner region.     ' 

Having defined the corner interaction an order of magnitude 

assessment of its effect on the bow and downstream flow so- 

lutions will now be given. 
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Significance of the Cornor ?.er;ion on the DOT
A' and Dov;nstrGarn 

Soiutio'rr" 

Since the bo,v resion layers are thin and bounded by strong 

shocks, then the flow properties within the layers are strong- 

ly influenced by the local shock conditions and only weakly 

influenced by the conditions in the corner region near the 

sonic point. V/e can therefore conclude that the bov; layer 

properties can be calculated independently of the corner re- 

gion v;ithout incurring serious error.  Since, as is discus- 

sed in the next section, the downstream flow depends on the 

balancing of jet and external flow interaction forces along the 

contact surface, then the significance of the corner region 

flow on the downstream solution is assessed by determining the 

axial force balance that would occur if the corner region flow 

is included or neglected. For the case when it is neglected, 

the jet flow is assumed to expand to its vacuum limiting angle, 

Qto  ' 

The particular example studied herein is that given in a report 
n 

by Rudman and Vaglio-Laurin . The axial force created by the 

jet flow is given by 

Applying this to the cases with and without the corner region 

and taKing their difference divided by the total force of the 

jet, we obtain ^ -©• 

cr     J  ^        — 
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where    .   ^L   <   ^    <   1 and        0   <   \?   <  9^5 

Substituting in the numerical values €tt>= 130.45,  ^RS =  55 de- 

grees, H = 4.17,ycoö^= -r      v/e obtain 

■fciH>' x =  .0425    or 4 percent 
FxtcW 

This error is v.fell belov; that created by using the approximate 

analytical source flov; expression (1) v;hich in some cases can 
15 

be in considerable error 

Since the details of the corner region flow are not signifi- 

cant to the calculation of bow or downstream properties, then 

engineering estimates of core pressure, plume boundary and 

penetration will be sufficient to approximate the corner re- 

gion flov; for this study. 

Core Pressure 

Qualitatively, the external and internal flows do not bend im- 

mediately downstream after passing the intercepting shock la- 

yer boundary due to the considerable lateral momentum impart- 

ed to the layers in the bow region.  Instead, the external 

shock moves continuously outward along with the bulk of the 

external and internal layer mass flow, leaving behind in its 

"wake" a low pressure (with respect to the shock value) flov; 

adjacent to the core region.  On this basis, we would expect 

the core pressure to be low and of the same order as ambient 

pressure. 

82 

■    - -    -   



in ■ ,m  ■DM ■. ■ -iw i 

In determining the core pressure, the experimental results of 
•■5 o o A 

Finley ; Charwat and Faulmann , and Jarvinen and Adams   will 

be utilized. From figure (7) of Finley, it can be seen that 

as Tl is increased, the core pressure drops to a nearly con- 

stant value. This behavior is also consistent with figure (11) 

in Jarvinen and Adams and figure (15) in Charwat and Faulmann. 

In our analysis, which is the limiting case when Tt ^> L t the 

core pressure will then be at a constant level for all values 

of Tf . 

These results are for exit Ilach numbers of 1.0, 2.6, 3.1, 3.9, 

and A.. 3 and free stream Ilach numbers of 2.5, 2.75, .6 and 2,0 . 

V7e therefore conclude that this behavior with Tt does not de- 

pend on exit or freestream Mach number. 

Noting the lack of dependency of the core pressure on Tt for 

Tt>^l v;e can now correlate all experimental results to estab- 

lish the best value for  P core. From figure (20), it is seen 

that the most general result, especially for high external 

Mach number, would be  'core = 1. This result is reason- 

able considering the wide variety of n««ii'j under which 

" pnre has been obtained and also in consideration of the 
Pco« 

nonuniformity in pressure throughout the core region. 
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Pluae Boundary 

As was mentioned previously, the plume develops in a re, 

of nearly constant pressure and, therefore, it is analogous 

to the case of an underexpanded jet into a still ambient. Va- 

rious analytical approaches describing the location of the 

boundary of the plume have been developed . (for eg. see re- 

ference 27 and reference 25).  Host of them give reasonable 

results near the nozzle exit but diverge considerably from 

the actual boundary away from the exit. For this study, an 
20 

analytical technique y is used vhich assumes a fixed plume 

shape for all nozzles when the coordinates are nondimension- 

alized with respect to plume boundary maximum radius and its 

axial coordinate. The advantage of this method is that it 

gives the correct boundary location not just near the nozzle 

exit but far from it as well.  The method relies on setting 

up momentum and force balances between the exhaust and core 

region gases. The shape of the plume when nondimensionalized 

is represented well by 

J 

where j = 2.5 gives the »'best" fit with numerical data. The 

balance of laoeral and axial momentum rjive respectively 
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where f i and J*. are functions of the nozzle geometry and ex- 

haust gas conditions. From the above expressions Xw/rj, and 

ifrt^/r*  can be found for any jet exit and ambient condition, 

thereby giving the plume boundary. This technique was uti- 

lized in locating the plume boundary for the example given 
7 

in Iludman and Yaglio-Laurin's  study. Good agreement is 

found with experimental results as can be seen in figure (S). 

Since we are dealing with highly underexpanded plumes (i.e., 

Tt»l ) where the intercepting shock layer is thin, then this 

boundary location is also assumed to be a good approximation 

for the intercepting shock location. 

Penetration of the Internal Layer 

Referring to figure (19), We can establish a qualitative des- 

cription of the corner region flow. The reflected shock ema- 

nating from the triple point, at a, crosses the intercepting 

shock layer and intersects the plume boundary at c. Since 

the boundary must be at constant core pressure, then the shock 

must be reversed and reflected as an expansion c-b. Crossing 

the layer, this expansion then intersects the slip stream sur- 

face at b, being once again reflected and partially trans- 

mitted as an expansion into the slightly supersonic internal 

layer flow d. The surface b-a remains nearly straight since 

only a small drop to sonic pressure over this region is ex- 

pected, which requires very littxs turning along b-a of th« 

supersonic flow in region a-b-c. The internal flow sonic 

poinl occurs at b because if it were sonic before this point 
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the non divercence of the streamlines in this region Mould 

unrealisticall/ prevent the flow from accelerating further. 

Also, the sonic point cannot lie beyond b because the di- 

verging nature of the flow would not allow sonic velocity 

to be achieved from the initial subsonic state. 

V/ithin the slightIv supersonic flow region, d, the trans- 

mitted expansions b-c are reflected off the nearly constant 

pressure sonic line surface as compressions. These return 

to the intercepting shock layer and are transmitted to the 

core region. The continual process of reflection, transmis- 

sion and interaction of these waves results in the rapid turn- 

ing of the flow in the dovmstream direction as is illustrated 

in figure (19).  Some idea of the shape of the sonic line and 

its limiting characteristics can be obtained by applying the 

ideas developed by Hayes and Probstein 50 for blunt body flow«. 

Taking u) as the angle that the contact or slip stream sur- 

face makes with the sonic line at these respective surfaces, 

we can write ( 

where
 (!&.••**■ ^/f^ 

and ^„e is streamline velocity, ^^^  vorticity and s and n 

are the coordinates along and perpendicular to the slip stream 

and contact surface. At point b we have nearly a straight 
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slip stream b-a and therefore the second term in fafc)      is 

negligible. Also, the shock is nearly spherical and in the 

vicinity of point a the vorticity generated is small. Under 

these conditions, r^^C: O  aid therefore oü 9*  TT/^ at 

b. At the contact surface, point e , different conditions 

prevail. Using the first order expressions derived in the 

bow region analysis section and assuming for simplicity that 

the internal shock and contact surface are spherical in nat- 

ure,then we can write in terms of nondimensionalized variables. 

>• • n(&)1? V = ^ Sc.^ 
Using Rudman's' example, we can write 

also, we have 

te) • ^Ä,-"« 
The ratio of these expressions gives 

tan'-O =   i^ which for ^ = 55°  gives ^ = 62 degrees 

Now that the sonic line angles are estimated at both bound- 

aries, we can then sketch its location throughout the layer 

as shown in figure (19). The initial turning of the sonic 

line in the downstream direction from point b,due to centri- 

fugal pressure gradient effects', is typical of the rapid tran- 

sonic expansion occurring in d and gives the sonic line its 
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characteristic s shape. The last limiting charactericoic 

lines which originate in regions d and f are also shown in 

figure (19).  Having obtained a qualitative estimate of the 

penetration of the intercepting shock layer into the internal 

layer, we can now make an estimate of the actual penetration 

for the example calculated by Rudman and Vaglio-Laurin .  The 

first step is to estimate the intercepting shock layer thick- 

ness which can be determined on the basis of mass flow con- 

siderations.  Subscripting layer properties by X   and utiliz- 

ing standard notation for undisturbed plume quantities, we 

can write 

Substituting in the analytic expressions for poo£ and Uool 

which can be derived from the analytical plume flow model, 

and letting 

we obtain g. 

For 600= 130.45°       eA     = 55* and    iu • 1    we 

have   ilL    > .062^ 

This value is characteristic of plumes whereTf»l .      The se- 

cond step involves determining the reflected shock position 

from    the triple point  solution.     Using the  initial conditions 

n«i     = 9.2, ^ = 86° for the strong shock and^rr 20° 
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for the intercepting shock, we obtain the reflected shock po- 

sition from D^ttorre31 which is shown in figure (8). 

Assuming that the Mach number downstream from the reflected 

shock is constant, we can then determine the initial reflected 

expansion wave's position and intersection with the slip stream 

surface. The position of this wave as shown in figure (8) 

defines the extent of the penetration into tfet internal layer, 

alike the point interaction or zero penetration model pro- 

posed by Rudman and Vaglio-Laurin7, we note a considerable pe- 

netration of the internal layer by the intercepting shock la- 
32 

yer flow. This fact is borne out experimentally in a study 

on the similar problem of a jet impinging normally and at an 

angle to a flat plate. The constraints on the numerical so- 

lution of Rudman and Vaglio-Laurin 7 imposed by their assump- 

tion cf a point interaction (i.e., zero penetration) for the 

corner region could be a source of considerable error in their 

calculation of the bow region. 

It should be mentioned that the large penetration indicated in 

this study does not necessarily mean that the bow region flow 

is strongly influenced by the corner region penetration. This 

is because, in the absence of the corner region flow, the inter- 

nal flow streamlines would penetrate the layer much like the 

slip stream separating the internal and intercepting shock 

layer flows. This can be seen by comparing streamlines ob- 

tained from the bow analysis in figure (17) with the slip 

stream position shown in figure (8). 
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From the results presented a scaling criteria for the corner 

region is now outlined. The major characteristic to be scaled 

is the undisturbed plume boundary, which for a given nozzle 

and exhaust gas composition depends on Poj/ P00« . For an 

exact simulation of the plume boundary, this ratio must be 

matcued.  If, for a given system, it can be shown that the 

plume boundary coordinates are proportional co  »AS,« or '» 

then the plume boundary will scale like the bow region. The 

technique   used to locate the plume boundary normalizes the 

geometry by f*x   and ^»*» the plume maximum radius and its 

axial location. When these are plotted ac a function oi 

^j/Pooe it is found that 

Da. , &Ö. «*• VPoj/p«ej 

Since Tt  is proportional to  » öj/po6»M«D% then 

r*   rv 

Thus, if Moot is fixed, then the plume boundary will scale 

with ^«I'O . The scaling of the bow region and plume boundary 

then requix-es that ^j , ^e , Ö», H ,  and nooe be fixed over 

the entire flight range. Since H«« does not vary greatly 

over a typical system trajectory, then the above scaling re- 

quirements are satisfied for some systems of interest. 

3. 7,  2^ 
This scaling result is substantiated by some experimental data 

in which the plume boundary triple point distance away from 

the axis, when divided by the scale length Rs«, is nearly con- 

stant for values of Tf from 30 to 627. 
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FAS FIELD RSGION ANALYSIS 

The downstream flow region between the external shock and axis 

of symmetry consists of supersonic layers bounded by mixing 

regions and crossed by a wake recompression shock as ic illus- 

trated in schematic (3) 

II3v—-    mixing region 

mixing region 

Schematic (3) 
This general problem cannot be handled by approximate analy- 

tical techniques; therefore, we will seek to solve a reduced 

problem within the framework of the assumptions listed in the 

introduction. This problem will invol/e: 

1) the neglect of all mixing regions (wake 

and shear surface) 

2) the neglect of the recorapression shock 

Assumption 1) will be valid at moderate altitudes and 2) will 

be reasonable since the recompression shock is weak compared 

to the external shock. A schematic of the flow and notacion 

used is then: 

Schematic (4) 

91 

.tf&^MM» --     -i      mill  i u 



^"^^^^^•»»^1 

The numerical natchinG criteria between the internal and exter- 

nal flow requires that static pressure and flow deflection must 

be equal at the contact surface.  Also, the stagnation pres- 

sures will be equal due to the upstream matching condition. 

The particular region of interest in this downstream analysis 

will be at a point "haracterized by the distance L , v;here 

L» R^Rcs. The ratio of R9to L will be a significant 

parameter for the downstream problem and we denote it by the 

symbol Se = Rs/L .  Once agaift, as in the bow region, we will 

be considering the case when M^M»,:^! aCt,,^«!, An aD_ 

proximate analytical method of solution is available for the 

external layer flow near the shock surface in region 1. This 

method was first applied by Cole 33 and involves taking the 

limits in the inviscid flow equations as the perturbation quan- 

titles, 

Meoe -^ CO ,  €e -^ o , Se -♦ O 

The solution found by this procedure is valid to a distance of 

ofr-SeL) measured inward from the shock surface. For attached 

shocks, this solution would be valid throughout the external 

layer. However, if the shock has a blunt nearly normal for- 

ward region, the external layer becomes thicker than the above 

order of magnitude and the solution breaks down away from the 

shock toward the contact surface. This is due to the viola- 
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tion in the blunt region of the assumption that the shock 

makes small angles with the free stream. As was pointed out 

by Cheng and Kirsch 34 in the equivalent unsteady case, a 

region of thickness o(SeO , denoted 2 in scneraatic (4), is 

then found near the contact surface which requires a differ- 

ent expansion in order to develop a valid solution in this re- 

gion. The solution found in this "entropy wake" matches with 

the outer layer, aid the composite expansions for the entire 

external layer will be given. 

For the internal layer, we have two conditions imposed by the 

external flow at the contact surface, which can be used to es- 

tablish the orders of magnitude of the flow variables within 

region 3, the interior layer. They are: 

Based on these conditions, we can then prescribe expansions 

for the flow variables in terms of perturbation parameters 

that will lead to a system of analytical solutions for the 

inner layer. 

Like the external "entropy wake" the internal layer is of thick- 

ness 0(5eL) . Utilizing the orders of magnitude found from 

the contact surface and upstream bow region conditions, we 
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then develop expansions which will be solved giving expres- 

sions for laver thickness and other variables of interest. 

Numerically matching these expressions with those of the ex- 

ternal flow, along the contact surface, we then achieve ana- 

lytic solutions in th^ far downstream region. These results 

are found to depend on the upstream bow interaction between 

the plume and external stream. Taking results from the bow 

region consistent with the accuracy of the downstream region, 

we then find the complete solution for the downstream flow. 

In the following discussion for the external flow, frequent 

reference will be made to the work of Cheng and Kirsch ^. 

They solved an unsteady problem that in many ways is anala- 

gous to our external layer problem by the application of the 

hypersonic equivalence principle. For details of the exter- 

nal layer analysis, the Cheng and Kirsch paper should be con- 

sulted. 
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External Layer - P.enion 1 Analysis 

Utilizing the notation illustratGd in schematic (4), the fol- 

lowing general 3et of equations and boundary conditions for 

the dovmstream problem in terms of von Mises variables 

are: 

«b-fe 
m =—3  
tVt        P*Ue Re 

(1.1) stream- 
line slope 

(1.2) continu- 
ity 

(1.3) momentum 
normal to 
streamline 

(1.4) Bernoulli 
integral 

(1.5; entropy 
integral 

Boundary conditions at external shock 

% ■ f>aD« 1- ^.^.Ctiism^* - l) (1#6) 

U« = U«.Cl - ^CM»,* 8,*\öt -l>^1-l.)H•.,•) (1.3) 

V« = ^ («CM«*«»m^ - l)cot^e/Vt+a)M«?       tX.9) 

Boundary conditions at contact surface 

Pec. «   P c es 

dx 
SÄ     ■ 

«Ax 

(1.10) 

(1.11) 
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Velocity parallel and normal to the shock are: 

u - U», cos/ße (1.12) 

The expanded Rankine-Kugoniot relations lead to the follow- 

ins orders of magnitude for the flow parameters near the 

shock: 

ßm   —   O (>>•./£«) (2.2) 

U, — Q (Uoo«) (2.3) 

Ve' - OitoU  Uoo.) tt.4) 

where f e is evaluated at the point v;here A = TT/^. . These 

conditions will be the upper boundary values for the external 

layer. From the orders of the variables near the shock, the 

dimension normal to the shock can be inferred from continuity 

considerations. 

^ - 0(6e5"eL) (2.5) 

The dimensions of the streamwise coordinate are easily seen to 

be 

* ~ OW (2.6) 
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These orders of magnitude,   (2.1 to 2.6),  are then used to form 

asymptotic expansions which are 

p«  =  fÄ.U4Se*p6e ^    •• 

Ve'  «   Uoo. 5e<£e Voe  ♦  '   • 

^ = LS. ee ^ft ^ •'• 

Substituting these expansions into the equations of motion, 

(1.1 to 1.5), and boundary conditions, (1.6 to 1.13), v;e can 

develop a sequence of equations which can be solved and then 

summed to yield the solution to any desired accuracy in terms 

of ^•»ScjMa^ . 

The first order system from the above procedure is 

^K • - kJVh ».I) 
i_ ClWjp«) - 0 (3-2) 

"i^aft • -■ ^^ (3-3) 

The boundary conditions on the above at the shock surface are: 

>oe = (A&af (4-1) 
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^e - 1. (4.2) 

Integrating (3«1 to 3.4) and applying the boundary condition: 

(4.1 to 4.3)» we obtain: 

r*   VTH)    **•«? (5.i) 
f„ = P»./^-^)* (5.2) 

^•ifcL^'W (5-3) 

I 

(5.4) 

Making ihe substitution 

%„ s R^/x. (5.5) 

in the above, we then obtain results identical to those of 
33 v 

Cole ^ 

MW^^Ci-teJ) ^ 
/ee • poe/(d^B.

,)i (6.2) 

DM = V*.JrS*gi*m.(4EJf (6-3) 
,   .   "*•  F   «*/      (6.4) 

As previously mentioned,  these results are expected to hold 
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near the shock surface; however, their validity near the con- 

tact surface has to be examined. From the bow region solution 

we know that a blunt interaction occurs. Consequently, as 

we follow the shock surface upstream to the vicinity of the bow 

region, we note that the shock must become nearly normal in 

form. Therefore, it invalidates our assumption of small free 

t-tream to shock angle, initially made in our above analysis. 

Under these circumstances, one would not expect our expansion 

procedure to be valid in such a region;and this turns out to 

be the case, as was found by Cheng and Kirsch ** for the un- 

steady problem. What we must do is alter our expansion pro- 

cedure so as to be consistent with the strong part of the shock. 

External Layer-Reräon 2 Analysi- 

Following Cher^ and Xirsch ** we assume that initially, due 

to the strong bow interaction of the jet and external flow, 

the external shock moves out in a blast wave manner. This 

requires that the external shock take the form: 

Um. *  AxeVi 

as X,-*0 where A is a function of the upstream bow inter- 

action, A requirement which must be met by the contact sur- 

face in the vicinity of the bl1 at interaction is that: 
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This states that initially the contact surface must move out- 

ward slower than the external shock, thus guaranteeing the 

dominance of the blast wave result for the upstream interac- 

tion. • Up to this point, we have paralleled the unsteady 

problem quite closely. The equivalence principle is most ac- 

curate near the shock with the streamwise velocity given by: 

The error involved in assuming U« *- Ueo.is seen to be small, 

of error O^Uo^öej . Hov/ever, as we approach the contact 

surface we have for the streamwise layer velocity, from the 

Bernoulli Integral. 

The error involved in taking U~Uoje in order to apply the 

equivalence principle is seen t^ be large for  fce — JL  of 

In order to utilize the equivalence principle, we then must 

stipulate that fcc cannot equal one but can be near one as 

long as de is small enough so that the term Se  *•  does 

not become of order one in the downstream region of interest. 

If these conditions are met, then we can apply the equival- 

ence principle and, therefore, make use of Cheng and Kirsch»s 
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results within the entropy layer. 

Assuning this form of initial behavior, ^-/e have then speci- 

fied the type of breakdown of the solution due to the near- 

ly normal character of the shoc;< in the vicinity of the nose, 
0 1 

It was found   that the expansion for -u, based on flow near 

the shock for initial blast wavj behavior would be of the 

fern: 

which would then become infinite and invalid ^s an expansion 

as Y64-»0 , or as we approach the contact surface. This 

form indicates that the expansions cannot be made uniformly 

valid by simply altering the scale of Yo* by a power of €e . 

In his analysis, it was determined that the scale normal to 

the shock suould be in terms of Ton to some power which is a 

function of €e . T.(
Te can then determine the orders of marni- 

tude of the rt.her variables by applying entropy and energy 

conservation principles. 

Following Cheng and Kirsch ^ we then establish a new sat of 

variables, fulfilling all the necessary conditions within the 

region adjacent to the contact surface. These are: 

Ve. =  Uoc ^t V6e + ' ' * (7-1) 
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= Se L ^o + • • • 

X 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

Substitutins these variables into the equations of notion, 

(1.1 to 1.5), we obtain the following set of first order re- 

sults: 

• O 

Voe 

■P O Pe« 

* "bq"< 
^ 

(Ö.1) 

(Ö.2) 

(Ö.3) 

(3.4) 

The carrying out of the integration   in (3.1)    and 

(3.2) gives 

F1     =    P-CX) (9.1) 
#0*     -    ^.e'U,©)   ^   Co^/poc (9.2) 

Hatching of the inner to the outer solution is carried out by 

determining the behavior of the solutions in an intermediate 

region where they are both valid. The results 

procedure are: 

34 of this 
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\a\ (10.2) 

Equations (10.1) and (^0.2) are nonlinear second order dif- 

ferential equations for the pressure distribution and shock 

position.  If v;e can obtain an inner layer solution which 

gives Res as a function of poe . then we can combine these 

results into the above to determine Rse and R.c» . 

Internal Laver - He^ion : Analysis 

Referring once a^ain to our flow diagram to establish the 

system of coordinates, we "have the following set of equations 

and boundary conditions for the downstream internal layer 

problem in terms of von I'.ises variables. 

^Rj! = ^4 (11.1) streaia 
^x     **• line slope 

iS^- ^ ^w  o- CU.2) contin- ^K   f^Ut Rt uity 

J.. "^ -t- hpi     =; O (11.3) momentum 
Ri. "bXi "bH^t normal to stream- 

line 

Ut' + Vi1 + 2£i.Bji  — ^^^O       {11.h)  Bernoulli 
^-^P'- Integral 

pUp**     - i&c) (11.5) Entropy 
*     * Integral 
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Boundary conditions at the internal upstream bow shock are: 

pi = fmi  ♦ ^Eu |Sb»i CM«,- sml3i - l)        (11.6) 

Vi = Uoo^ C^'^t«'^-1)00^61^+1^00*) (11.9) 

Boundary conditions at the contact surface are: 

pCM ,   F>ecs (11.10) 

4§J^      -   i&MA (11-11) 

At the axis j R.C = O , the syr-metry conditions are applied. 

Also, in the bov; region solution, v:e note the condition that: 

P i AyJfeM  ■ Pe «^M^IMI (11.12) 

From the external layer results, v;e can infer the order of 

magnitude of some inner layer quantities. From the contact 

surface condition, (11.10), v:e have 

Pit» - Pec» = 0 ( fooeUoo* ^e*) 

In addition,  from the  stagnation point  condition,   (11.12), 

fcoCcUeoi     —    O   C^boe-Uoc^) 

where      Pooi       "s value  0^ density alon~ axis in front of in- 
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ternal  shock, v;e find 

fie*    s     O Cf«oltt   U^ ^e2) (12.1) 

Since entropy is conserved alon~; streanilines, ve  can es- 

tablish the order of magnitude of density in the internal 

layer near the contact surface from (11.5) 

?^/pc 

For   Mooi^l  ,   sm*/6(   C:   1     the  shock conditions,   ai.7) 

and  (11.6),for th3  streamline    which wets the  contact  sur- 

face become 

V/here  subscript    o    denotes normal shock location in bow 

region.    '.Then substituted into the entropy equation,   (11.5), 

the result is: * 

fi-     =    0(fmH» *•***/**>) (12.2) 

From the second contact surface condition, (11.11), v;e find 
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This also  reouires that 

vi/cu   =  oCSW) (12.3) 

near the contact surface, which is an upper bound on this 

ratio.  Another expression v/hich can be utilized is Bernoulli' 

equation, (11.4), Slons a streamline.  Substituting (l^.". to 

12.3) into this equation and assumingUi of the form 

we obtain 

Therefore, v;e find that 

u;" = Cs.a(^)) 
(12.4) 

Therefore, v;e can conclude tha4- for Ui to be constant in the 

first approximation in the above flov; system, it is neces- 

sary that Vt^ land 5c be small enough so that the term 

Se ^ »1 / << OiX)    .    These are the same conditions v:hich 

are necessary for the external layer solution to be valid 

near the contact surface; therefore, v/e assume that this will 

be the case in the present problem. This leads to the result 

a;   -  o(u»t,,) (12.5) 
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Fron the contact surface  condition,   (12.3), Wi find 

Vu  •    OCUXH Je) (12-6) 
• 

'Je have now established the orders of magnitude of all inte- 

rior variables of interest near the contact surface. V.?e HOW 

postulate expansions for  the variables based on these orders 

and then substitute them into the equations of motion to yield 

a sequence of solutions, which can be summed to give the solu- 

tion to any order of accuracy for the internal layer flov;. 

The expansions are for  £ t'o -* O 9 ®e "* 0 5 ^Vi« "> ^ 

pi ■ feot-o Uoo* £e* pot + * * ' 

Ul  -  Uoot -»-••• 

The first order set of equations is 

^Pot = O (13.1) 

^RoJ __J  (13.2) 

(13.4) 
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Integrating» v;e then have 

foe   -    poCCx) (u>1) 

(U.2) 

(U.3) fol   ■     Pot foC*/f>ol* 

C->nbinin-  (14.1,  1^.2 and 14.3),  v;e obtain 

Res   - ^-j f £°u wc (u.4) 

Row that v;e have results for the internal and external flov;, 

.ve can combine them to determine the location of the shock 

and contact surface, as well as find the values of the pro- 

perties across the layers. 

From the external flov, we have the results: 

P"«= (#)Z "MTS
1
)        

(10-2) 

N^Cfc«*   - R^ " ^*     (10'1> 

Also from    the  internal flow, we have the result 

Since      ^ootUoi  ■  PooJoUooc     1'%ro:n thG  stagnation point  con- 

dition,  then        poec»   •   -poL^)       •     ■•Te  can no'v combine 
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these relations (10.1, 10.2 and U*4) from which property 
i 

variables can be determined. 

Taking (10.1)  and (14.4) we have 

Po«e» 
or 

Pcec.a: = «. + *L&-J*C   (i5-i) 

Combinins (15.1) v/ith (10.2), we then obtain for the shock 

shape a second o;der non-linear differential equation 

Jtt* 

(&Tw-Ä%)^=t+afe^ (15.2) 

For    "SVR.s'   >^ 1        » which is in the dounstream region of 

interest,   (15.2) admits a solution of the form 

R».     =    Cxya (15.3) 

V/hen (15.3) is substituted in (15.2), we find the value of 

C to be given by 
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Using (15.4) in (10.2) to find  po^Cx)  (U.O then be- 

comes 

4»!  ■  #-  f^ftJ^t       (15.5) 

Combi.iins (15.4) and (15.5), we then obtain the follewillc 

expression for the contact surface shape in terms of the shock 

shape 

V/e now have determined the values of   "fet , R.C5 in terms 

of the functions ö^ and  f P*t*    Jl^ Thp>c.p 

expressions are functions of the blunt interaction between 

the external and internal layers at the extreme upstream 

position in the bow region and are a result of the matching 

of pressures across the upstream contact surface. 

We, therefore, must postulate an upstream interaction based 

on our solution for the bow region flow which is consistent 

with the approximations made in this downstream region. 

For the downstream analysis, we require ^6t.*o M^IV»®. 

These limits must also be applied to our bow region matching 

conditions which are the equality of pressure and flow deflec- 

tion along the contact surface. Since our bow region internal 
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flow is a perturbation of the case where the shock and body 

surface are a spherical shell, for  €-co = 0   , then we 

make the approximation that the upstream interaction region 

is spherical in nature. For i/nt external flow, it is a well 

35 established fact   that the downstream shock surface does not 

depend on the details of the pressure distribution along the 

contacv. surf ace, but only on the total integrated pressure dis- 

tribution (i.e., drag) in the axial direction, adding further 

validity to the use of the above assumption. Along this sur- 

face, the pressure induced by the internal flow must match 

that of the external flow. To first order, which is the de- 

gree of accuracy for the downstream region, the pressure change 

across the shock layer is zero and, therefore, we can calcu- 

late the pressure on the contact surface by simply finding 

the pressure level behind a spherical shock surrounding the jet 

flow source. For the case MeBi',>> l ^ sw^ yö^ i 1   , 

the expression for pressure behind the shock reduces to 

Poo to 

Non-dimensionalized with respect to the external conditions, 

this relation becomes 

1        ^P«oio  jaeoc Uoo« 
From the equality of stagnation pressures, this then reduces to 
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From the  F^urce conditions, v;e have 

pe*e   *    cos11 HSC 
r 2.600 

With the pressure level and contact  surface  shape deterniin^d, 

we have  satisfied our matching criteria and our next step is 

to calculate the functions   C0   and    1    jfevn. clH-'t 
Jo ^Pot* 

Evaluating the integral from the internal layer solution, v;c 

find 

J cos^TESL sing) el^ 

In this result, the upper integration limit requires some dis- 

cussion.  Strictly speaking, in order to calculate the pres- 

sure and density distributions over the full range of Q) 

one would have to take account of the effect of the plume 

boundary ^nd the mass flowing in the plume boundary layer on 

the internal shock. However, for highly underexpanded jets, 

there is relatively little mass flowing in this layer and, 

therefore, the integration of the abeve to the vacuum limit, 

<P = ©eo   creates only a small error in the downstream 

analysis. 

V/e now seek to determine the value of Cr0 . it can be shov.Ti 

that for ^/Ksi« ' ' 1 our postulated initial blast wave be- 

havior for the   shock shape can be written as 

112 

'— - ■--■   -    — ■ 



V.'here Xb to our degree of approximation can be written as 

lb =   kfrLaJbl-aJ 

In the  above CON is the nose  cra0 coefficient of a hypothe- 

tical blunt nosed slender body, which takes on the shape of 

the  contact  surface.      C bi^        is directly related to the 

blunt interaction and is written as 

CON ~   J^n-n^A/^j^u^TTj^* 
Sir.ce we  stipulated that R Vfc. ^ o as VR, »t'o 

:hen equations(lO.l)  and  (10.2)  give 
■ 

as x/Rsto "• O 

fror" which 
lb 

V/e no-w  calculate    C^N    ba^ed on our postulated upstream in- 

teraction.       For a spherical  r_:hcll interaction with the  pres- 

sure  distribution given by 

then 

and 

p   =  j^ODeU^e   cos ^ Hg 

K • r> x  •    cor. Q> 

<iA *   2/rr Rst'o1 sin<J dy 

which load3 to 

i i i 
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r^ 
" ■     ■, -    "     ■   ■' ■" ' ...■-! 11    W<m m    ■■        in   ■   i 

e« 

CbN -  H [ co*nli^-s^9w cosg^ cl9* 

o 

As in a previous integration, we use öoo as the upper limit of 

integration instead of the exact result.  In this case, v;e are 

further substantiated in this approximation by the fact that 

near ooo^the contributions from the above integrand to C^n 

are near zero due to the cos Our     factor in the above. 

V/ith the previously calculated values, the shock shape can 

now be written as 

©• pm 'A/ 

■ . 

Also from (15.6) we have 

Res - ^/yfeggrrTwi -«■ lJ 

T.;Te are now in a position to calculate layer properties based 

on these results.  For the external flow we have 

'..'ith 

fL»cx*   po = ^(i-^cp) 
This distribution will be valid throughout the external layer 

The density distribution la given by 
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H^IHW »■ 

p0  =  (l 4 ^»/ip)^/».^ 

The result is not strictly valid since the density is not 

zero at the contact surface. 

V/hen referenced to values at the shock, the results become 

Pe/pe   -    '/*.  U   +   HW$0 ^(16.1) 
Pft/j^   =  ^ CV^X^- + ^/^ (16.2) 
Te/fe    =     ^/y* ** (l6-3) 

For the internal flow, we have the following results: 

po.; ■ CV0X (16.4) 

Pol     ■ CVSX (16.5) 

vo^   - fll/cj^/«^»^^ (l6-6) 

V/hen referenced to values at the  shock,  the above become 

pc/p;   «   y*. (I6i7) 

C* Ueot 

(16.9) 

** Not valid at contact surface 
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The first order solution obtained thusfar from the hypersonic 

small disturbance form of the Newton-Busenann approximation, 

is adequate to describe layer thicknesses, pressures, and den- 

sities in the far field region near the contact surface. How- 

ever, due to the assumption of *t,^lthe temperature to the 

first approximation is in considerable error for */(?•»!. 

This is because the expression for temperature,^" =(.£]*5^ 

gives the unrealistic result that for all P^. jT-^las ^l 

This result is acceptable for small X/^,  where p/p, is of 

order one, however, for V^^^is small and even for V 

near one 31 << a. 
Ts 

To obtain a more accurate value for temperature near the con- 

tact surface, the uaexpanded forms of the variables in terms 

of y will be retained.  Referring to Cheng and Kirsch34, the 

unexpanded for JT results for the "entropy ^ake'are 

(17.1) 

(17.2) 

The retention of the exponent, /*., in (X7,V,{17.2)  is justified 

because the relative errors are smaller than any integral po- 

wer of 6«  .  Applying the same reasoning to the internal la- 

yer expressions, (U.3), CU.4), we obtain 

y*£ /»«- fax* (17.3) 
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R^ 4 film (17.4) 

Matching (17.1) to the near shock layer results (6.1) and 

then combininc with (17.4) we obtain 

This^is the sane form as expression (10.1) with p« replaced 

by fe e.  To the accuracy needed for VRS^ 1 it is ade- 

quate to use the formal result (10.1) which utilizes p0 in- 

stead of pe*e.  However, for the distribution of temperature, 
we use 

Ts VBi. (17.5) 

for both the external near the contact surface and internal 

flow. This expression will give accurate values of ^- for 

small p/ps as well as for P/o near OHP  TV K.    
S 

r/ps
aear one. To be consistent, 

we also use the density expression 

f. - (£f (X7.6) 
instead of  j, . ^ „^ 

Making use of (17.5) and (17.6) and the expression for pres- 

sure (16.1) the temperature and density distributions near 

the oontao^ surface for the external flow and within the in- 

ternal layer are 

Vexp*; 

vexps; 
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?h« above expressions, as well as those previously found, are 

used to predict geometry and flow properties in the far field 

region for typical systems of interest. 
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DISCUSSION OF RESULTS 

Examining the far field analytic solution, we find that an 

experimental simulation of an actual flow requires matching 

g' ife ,00», n  and R$co t the same scaling parameters used 

in the.bow region simulation. If, in addition to the above, 

Poj/Peoe is matched then the bow, corrter and far field geo- 

metry will be simulated. For a given system with fixed am- 

bient and exhaust gas composition (i.e.,^e,tf/ fixed) and noz- 

zle conditions (i.e.,6eo,n ) the flow geometry will scale as 

does the bow region with Rs«, or Tf . If M«»«is also as- 

sumed to be fixed, then the bow, corner and far field regions 

will all scale with Rsto . Calculations of far field flow 

geometry and properties have been carried out and the results 

appear in figures (21) to (24). As in the bow analysis, x.he 

far field geometry is sensitive to the exponent used in the 

exhaust plume model. From figures (21) and (22) it can be ob- 

served that the internal layer occupies a large fraction of the 

shock layer flow.   This is due to the greater amount of str- 

ongly shocked, and hence lower density, gas in the internal 

flo'./ compared to that in the external flow. 

As shown in figures (21) and (22), increasing ©«.or *} re- 

sults in the moving outward of the shock and contact surfaces. 

This behavior is consistent with the results from the bow re- 

gion. Also, near the contact surface, temperature, pressure, 

and density for the internal and external flew increase for 

increases in öoo or oj . 
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The effect of the internal layer flow on.the external flow 

pressure, density, and temperature is to maintain them at a 

higher level than that created by just the bow interaccion. 

This can be seen from expression 15.4 in the far field analy- 

sis section where the coefficient for the pressure decay 

expression consists of the normal bow interaction term plus 

the effect of inner layer thickness. 

In figures (23) and (24) the detailed property distributions 

across the layers are given for the same "cold" jet and actual 

jet cases that were analyzed in the bow section. 

Consistent with the bow region results, we find that the act- 

ual jet case shown in figure (24) has a hot, low density ex- 

ternal layer, which flows over a cooler and more dense inner 

layer. If allowed, considerable heat transfer and mixing bet- 

ween the external and internal layers would occur. The "cold" 

jet case does not exhibit as sharp a change in flow proper- 

ties across the contact surface as that of the actual case. 

This indicates that "cold" jet experiments must be interpreted 

carefully in light of the   greater mixing and heat trans- 

fer effects for the actual system versus the "cold" jet simu- 

lation. 
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CONCLUSIONS 

Analytical techniques for predicting flow properties in the bow 

and far field regions of an opposed hypersonic plume in a hy- 

personic stream have been developed. It hr-.s been shown that 

they are valid for a wide ran-e of altitude and jet thrusts 

for typical systems. The influence of the corner r^-ion flow 

on the bow and far field flow predictions has been shown to be 

negligible.  Consequently, only a qualitative outline of the 

flow processes in this region are given. 

Some of the major results of the analyses and calculations 

are: 

1. Experimental simulation depends on the matching of 

^e > ^j > ^fl0 i n > ™*im  > Poj / poo« 

2. For a given system with fixed ambient and exhaust 

composition, external Mach number and nozzle con- 

ditions (i.e., fixed ifejfrpöeo^Mcot) the entire flow 

geometry will scale with R$i^or n   , 

3. This analysis confirms the good accuracy of,the 

Newtonian impact analysis when applied to the axi- 

symmetric bow region, and suggests that the extension 

of this simple technique to predict asymmetric bow 

geometry might be successful. 

4. The bow and far field solutions are sensitive to the 

exhaust plume model exponent used and consequpntly 

for accurate predictions of flow properties an accu- 

rate plume model must be utili.-od. 
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5. Penetration of the intercepting shock layer flow into 

the internal layer is considerable. However, the 

influence on the bow and far field properties is 

small. 

6. Good agrsMMltt is found betv/een a calculated bov/ re- 

gion geometry and an experimental result. 

7. Calculations show that mixing and heat transfer ef- 

fects between the hot external and cooler internal / 

layers are more pronounced in the actual case thorn in 

the experimental "cold" jet simulation. 

Ö. Increasing the primary system design parameters Beo 

and Oj  with all other parameters fixed results in 

a. The thickening of internal and external layers 

in the bow and far field regions 

b. An increase in radius of curvature of the con- 

tact surface and thereby an increase in bluntness 

for the bow region 

c. An increase in the angle between the far field 

external shock and free stream direction 

d. A higher level of pressure density and tem- 

perature both across and along the internal and 

external layer flows. 

* 9» is related to nozaie exit lüacE number ail  an-le and— 
exhaust gas composition. For a fixed composition, Increasinr 
nozzle exit angle or decreasing exit Mach number rives in- 
creases in 0« . Vj  is related to exhaust gas^comoosition 
wnich in general will decrease as the degrees of freedom or 
the complexity of the exhaust molecules increase. 
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9. The effect of the internal layer on the far field 

region properties is to maintain the pressure, den- 

sity, and temperature of the flow at a higher level 

than that which would be created by the bow region 

interaction with the far field internal layer flow 

absent. 

For high Reynolds' number flows the present technique may be 

extended to treat mixing effects along the contact surface 

by the use of boundary layer methods. Also, equilibrium chem- 

istry effects may be easily incorporated into the present mo- 

del through use of Ilollier charts. 

Further extension of the bow layer technique to include vis- 

cous chemically reacting and merged layer effects requires 

considerably more effort than the above extensio is.  In this 

regard, an advantage of the present technique over the numer- 

ical technique of reference (7) is that a complete solution of 

the bow region requires approximately 13 seconds on an 1311 

36O-65, whereas the numerical technique requires 120 seconds 

on the much faster CDC 6600. This economy may prove to be 

significant in extending the above techniques to be able to 

predict viscous chemically reacting or merged layer bow pro- 

perties where an order of magnitude increase in computational 

times is expected. This makes the technique of reference (7) 

uneconomical for use in parametric calculations whereas the 

present technique would still fall within the practical time 

limitation for these calculations. 
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Appendix (A) 
Bow Initializing Schema 

To integrate the bow region equations for points away from 

the axis, we must first obtain the initial radii of curva- 

tures and positions of the shocks at the axis. Writing equa- 
tions (23.1), (23.2), (58.!) and (53#2) in ^ ^^ 

til = /UO + Bfa)^ 

pi * c(aO + bCac) fc* 
(1) 

(2) 

(3) 

(4) 

we develop expressions for $i/f%  and shock radii of curva_ 

tures R5Co/Rst  . The geometry which relates the internal 

flow parameters to those of the external flow is illustrated 
in schematic (5) 

Schematic (5) H-fH 
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In the above illustration 

Re ' Rse. Cl + ^e
l-ALa^- BCq^e) (6) 

Referrins to schematic (5) we can write for 

Angle matching 

Pressure Matching 

(7) 

(Ö) 

V/e now have two equations with three unknowns 9«/$,;, ae, Q.: 

Consequently, we must relax one of the parameters aj, Qe 

in order to obtain a unique solution.  Choosing q«; = 0 the 

expressions for A (0.0, B ( ^j), C ( Oi)  and D ( *) simplify 

considerably. 

Substituting (8) into (7) we obtain qe which also gives ^e/^t'. 

From these results the ratio of shock radii of curvatures at 

the axis, Ksi'o/f^St , and the relative position of their cen- 

ters must be obtained. Referring once again to schematic (5) 

we have from geometry 

Re Wi ^ 
For small values of the angles v/e  can write 

9e Rsc^o (I   4-  A   •+    S flV 
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For the initial point, Ria^^fr can be obtained. 

The distance between their centers is then given by 

Having obtained the ratio of the radii of curvatures and 

their relative positions at the axis, we then use these quan- 

tities as input data to the computer program, which predicts 

bow properties for regions away from the axis of symmetry. 

— 
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FIG. 4   EXPERIMENTALLY DETERMMED SHOCK AND 
CONTACT SURFACE LOCATIONS   REFERRED 
TO   Rsio 
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